Автор закона сцепленного наследования

Сегодня мы подготовили статью: "Автор закона сцепленного наследования" на основе авторитетных источников. Если в процессе прочтения возникнут вопросы, обращайтесь к дежурному консультанту.

Закон Моргана – сцепленное наследование

Закон независимого распределения признаков (третий закон Менделя) нарушается в случае, если гены, определяющие разные признаки, находятся в одной хромосоме. Такие гены обычно наследуются совместно, т. е. наблюдается сцепленное наследование. Явление сцепленного наследования было изучено Томасом Морганом и его сотрудниками и поэтому носит название закона Моргана.

Закон Т. Моргана можно сформулировать следующим образом: гены, находящиеся в одной хромосоме, образуют группу сцепления и часто наследуются совместно, при этом частота совместного наследования зависит от расстояния между генами (чем ближе, тем чаще).

Причиной, по которой сцепленное наследование нарушается, является кроссинговер, протекающий в мейозе при конъюгации хромосом. При этом гомологичные хромосомы обмениваются своими участками, и таким образом ранее сцепленные гены могут оказаться в разных гомологичных хромосомах, что обуславливает независимое распределение признаков.

Например, ген A сцеплен с геном B (AB), в гомологичной хромосоме находятся рецессивные аллели соответствующих генов (ab). Если в процессе кроссинговера гомологичные хромосомы почти никогда не обмениваются участками так, что один ген переходит в другую хромосому, а другой остается в прежней, то такой организм образует гаметы только двух типов: AB (50%) и ab (50%). Если же обмен соответствующими участками происходит, то какой-то процент гамет будет содержать гены Ab и aB. Обычно их процент меньше, чем при независимом распределении генов (когда A и B находятся в разных хромосомах). Если при независимом распределении всех типов гамет (AB, ab, Ab, aB) будет по 25%, то в случае сцепленного наследования гамет Ab и aB будет меньше. Чем их меньше, тем ближе гены расположены друг к другу в хромосоме.

Особо выделяют сцепленное с полом наследование, когда исследуемый ген находится в половой (обычно X) хромосоме. В данном случае изучается наследование одного признака, а вторым выступает пол. Если наследуемый признак сцеплен с полом, то он по-разному наследуется при реципрокных скрещиваниях (когда признаком сначала обладает родитель женского пола, потом мужского).

Если мать обладает генотипом aa, а у отца проявляется доминантный признак (точно есть один ген A), то в случае сцепления с полом все дочери будут иметь доминантный признак (в любом случае получат от отца его единственную X-хромосому, а все сыновья — рецессивный (от отца достается Y-хромосома, в которой нет соответствующего гена, а от матери — в любом случае ген a). Если бы признак не был сцеплен с полом, то среди обоих полов детей могли быть обладатели доминантного признака.

КОНСУЛЬТАЦИЯ ЮРИСТА


УЗНАЙТЕ, КАК РЕШИТЬ ИМЕННО ВАШУ ПРОБЛЕМУ — ПОЗВОНИТЕ ПРЯМО СЕЙЧАС

8 800 350 84 37

Когда исследуемые гены сцеплены в аутосоме, то такое сцепление называют аутосомным. Сцепление называют полным, если родительские комбинации аллелей не нарушаются из поколение в поколение. Такое бывает очень редко. Обычно наблюдается неполное сцепленое наследование, которое нарушает как третий закон Менделя, так и закон Моргана (в его сокращенной формулировке: гены, находящиеся в одной хромосоме наследуются совместно).

Гены в хромосоме расположены линейно. Расстояние между ними измеряется в сантиморганах (сМ). 1 сМ соответствует наличию 1% кроссоверных гамет. Проводя различные скрещивания и статистически анализируя потомков, ученые выявляют сцепленные гены, а также расстояние между ними. На основе полученных данных строятся генетические карты, в которых отражается локализация генов в хромосомах.

Биология в лицее

Сайт учителей биологии МБОУ Лицей № 2 г. Воронежа, РФ

Site biology teachers lyceum № 2 Voronezh city, Russian Federation

Наследование при сцеплении генов и кроссинговере. Закон Моргана. Хромосомная теория наследственности. / Генетика пола. Наследование признаков, сцепленных с полом. / Решение задач. Наследование при сцеплении генов и кроссинговере. Наследование признаков, сцепленных с полом

Наследование при сцеплении и кроссинговере

Наследование признаков, сцепленных с полом

Сцепленное наследование генов

У любого организма число генов во много раз превосходит число хромосом. Поэтому сотни и тысячи генов, локализованных в одной хромосоме, наследуются совместно, сцепленно, образуя группы сцепления. Число групп сцепления соответствует числу пар хромосом. Так, у мушки дрозофилы 4 пары хромосом и 4 группы сцепления, у кукурузы 10 пар хромосом и 10 групп сцепления генов. Явление сцепленного наследования генов, локализованных в одной хромосоме, получило название закона Моргана.

Биология в лицее

Сайт учителей биологии МБОУ Лицей № 2 г. Воронежа, РФ

Site biology teachers lyceum № 2 Voronezh city, Russian Federation

В начале XX в., когда генетики стали проводить множество экспериментов по скрещиванию на самых различных объектах (кукуруза, томаты, мыши, мушки дрозофилы, куры и др.), обнаружилось, что не всегда проявляются закономерности, установленные Менделем. Например, не во всех парах аллелей наблюдается доминирование. Вместо него возникают промежуточные генотипы, в которых участвуют обе аллели. Обнаруживается также много пар генов, не подчиняющихся закону независимого наследования генов, особенно если пара аллельных генов находится в одной и той же хромосоме, т. е. гены как бы сцеплены друг с другом. Такие гены стали называть сцепленными

.

Механизм наследования сцепленных генов, а также местоположение некоторых сцепленных генов установил американский генетик и эмбриолог Т. Морган. Он показал, что закон независимого наследования, сформулированный Менделем, действителен только в тех случаях, когда гены, несущие независимые признаки, локализованы в разных негомологичных хромосомах. Если же гены находятся в одной и той же хромосоме, то наследование признаков происходит совместно, т. е. сцепленно. Это явление стали называть сцепленным наследованием

, а также законом сцепления или законом Моргана.

Закон сцепления гласит: сцепленные гены, расположеные в одной хромосоме, наследуются совместно (сцепленно) .

Примеров сцепленного наследования генов известно очень много. Например, у кукурузы окраска семян и характер их поверхности (гладкие или морщинистые), сцепленные между собой, наследуются совместно. У душистого горошка (Lathyrus odoratus)

сцепленно наследуются окраска цветков и форма пыльцы.

Все гены одной хромосомы образуют единый комплекс – группу сцепления

. Они обычно попадают в одну половую клетку – гамету и наследуются вместе.

Читайте так же:  Наследство после смерти матери без завещания дом

Группа сцепления

— все гены одной хромосомы. Число групп сцепления равно количеству хромосом в гаплоидном наборе. Например, у человека 46 хромосом — 23 группы сцепления, у гороха 14 хромосом — 7 групп сцепления, у плодовой мушки дрозофилы 8 хромосом — 4 группы сцепления.

Гены, входящие в группу сцепления, не подчиняются третьему закону Менделя о независимом наследовании. Однако полное сцепление генов встречается редко. Если гены располагаются близко друг к другу, то вероятность перекреста хромосом мала и они могут долго оставаться в одной хромосоме, а потому будут передаваться по наследству вместе. Если же расстояние между двумя генами на хромосоме велико, то существует большая доля вероятности, что они могут разойтись по разным гомологичным хромосомам. В этом случае гены подчиняются закону независимого наследования.

Таким образом, третий закон Менделя отражает частое, но не абсолютное явление в наследовании признаков.

Основные доказательства передачи наслед-ственности были получены в экспериментах Моргана и его сотрудников.

Таким образом, сцепленное наследование — явление совместного наследования генов, локализованных в одной хромосоме.

Автор закона сцепленного наследования

Раздел ЕГЭ: 3.5 … Законы Моргана: сцепленное наследование признаков, нарушение сцепления генов…

В каждой хромосоме локализовано множество генов. Гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются вместе. Совместное наследование генов Т. Морган предложил назвать сцепленным. Число групп сцепления соответствует гаплоидному набору хромосом.

Способ наследования сцепленных генов отличается от наследования генов, находящихся в разных хромосомах. При независимом комбинировании дигибрид образует четыре типа гамет в равных количествах, а дигибрид с генами, локализованными в одной паре хромосом, — только два типа гамет, тоже в равных количествах.

Цитологические основы сцепленного наследия

Возникают и другие типы гамет — АЬ и аВ — с новыми комбинациями генов, отличающимися от родительских. Причина этого — кроссинговер (обмен участками гомологичных хромосом, перекрёст хромосом). Особи, получающиеся из гамет с новым сочетанием аллелей, — кроссинговерные (рекомбинантные). Частота перекрёста между двумя генами, локализованными в одной хромосоме, пропорциональна расстоянию между ними. Кроссинговер между двумя генами происходит тем реже, чем ближе друг к другу они расположены.

Сцепленное наследование — феномен скоррелированного наследования определённых состояний генов, расположенных в одной хромосоме.

Полной корреляции не бывает из-за мейотического кроссинговера, так как сцепленные гены могут разойтись по разным гаметам. Кроссинговер наблюдается в виде расцепления у потомства тех аллелей генов и, соответственно, состояний признаков, которые были сцеплены у родителей.

Наблюдения, проведённые Томасом Морганом, показали, что вероятность кроссинговера между различными парами генов разная, и появилась идея создать генные карты на основании частот кроссинговера между разными генами.

Расстояние между генами, расположенными в одной хромосоме, определяется по проценту кроссинговера между ними и прямо пропорционально ему. За единицу расстояния принят 1 % кроссинговера. Чем дальше гены находятся друг от друга в хромосоме, тем чаще между ними будет происходить кроссинговер.

Это конспект для 10-11 классов по теме «Законы Моргана: сцепленное наследование признаков». Выберите дальнейшее действие:

Закон Моргана

Хромосомы

Чтобы рассказать кратко и понятно о законе Томаса Моргана, следует для начала вспомнить, что такое хромосома.

Хромосома – это структура, находящаяся в ядре клетки и несущая наследственную информацию. Состоит из длинной цепи ДНК, которая в свою очередь состоит из генов – единиц наследственной информации. Каждый ген отвечает за определённый признак. Набор хромосом называется кариотипом.

Рис. 1. Хромосома.

Мендель рассматривал признаки, находящиеся в разных хромосомах. При скрещивании образуются разные комбинации генов, формирующие генотип индивида.

В отличие от закона Менделя закон Моргана применим к генам, находящимся в одной хромосоме.

Кроссинговер

Закон сцепленного наследования Т. Моргана может нарушаться. Происходит обмен участками генов между гомологичными хромосомами, и образуются новые комбинации генов. Такое явление называется кроссинговером. Нарушение связей происходит в мейозе при конъюгации (I профаза – сближение и соединение). Гомологичные хромосомы обмениваются участками, нарушая сцепленные связи. В этом случае полностью соблюдается третий закон Менделя.

Рис. 3. Кроссинговер.

Работа Моргана заключалась в следующем:

  • мушки дрозофилы имеют сцепленные гены – особи с серым телом (A) имеют длинные крылья (B), а особи с чёрным телом (a) – короткие крылья (b);
  • при скрещивании двух особей с генотипом AABB и aabb всё первое поколение (100 %) будет серым с длинными крыльями (AaBb);
  • предполагалось, что при анализирующем скрещивании AaBb с aabb по закону Менделя соотношение фенотипов будет 1:1:1:1 (по 25 %), т.е. AaBb, Aabb, aaBb, aabb, следовательно, гены лежат в разных хромосомах;
  • Морган при анализирующем скрещивании получил два фенотипа – AaBb и aabb, т.к. два признака сцеплены;
  • в соответствии с кроссинговером около 7 % мушек были серые с короткими крыльями или тёмные с длинными крыльями.

Возможность кроссинговера возрастает, если сцепленные гены расположены на значительном расстоянии друг от друга. Чем ниже процент кроссинговера, тем больше вероятность сцепленного наследования.

Закон

Формулировка закона звучит следующим образом: гены, расположенные в одной хромосоме близко друг к другу, образуют группу и наследуются сцеплено. Число сцепленных групп соответствует гаплоидному набору – половине полного набора хромосом. У человека 46 хромосом, т.е. 23 пары, соответственно 23 группы сцепления.

Рис. 2. Закон Моргана.

Частота наследования зависит от расстояния между генами. Чем ближе находятся гены, образующие группы, тем чаще наследуются сцепленные признаки, т.е. при близком расположении сильнее сила сцепления.

Примеры сцепленного наследования:

  • окраска семян кукурузы сцеплена со структурой их поверхности (гладкая или морщинистая);
  • окраска цветков душистого горошка сцеплена с формой пыльцы;
  • болезни (дальтонизм, гемофилия) сцепленны с Х-хромосомой.

Если гены не сцеплены, то образуется четыре типа гамет AaBb – AB, aB, Ab, ab. При скрещивании гибридов соотношение фенотипов будет 9:3:3:1 (произойдёт расщепление).

Что мы узнали?

Из урока 9 класса биологии узнали о строении хромосом и законе Томаса Моргана, связанном с расположением генов. Находящиеся в тесном сцеплении гены наследуются вместе. Связь может нарушаться при кроссинговере – явлении, при котором образуются новые комбинации генов из ранее сцепленных групп.

Химия, Биология, подготовка к ГИА и ЕГЭ

Сцепленное наследование

Автор статьи — Саид Лутфуллин.

Читайте так же:  Медицинское свидетельство о смерти где получить

После открытия законов наследственности Менделя стали замечать, что не всегда эти законы срабатывают.

Например: скрестили дигетерозиготную самку дрозофилы с серым телом и нормальными крыльями с самцом с черным телом и укороченными крыльями .

Серое тело и нормальные крылья – доминантные признаки.

По законам Менделя схема скрещивания такая:

Но практический результат скрещивания отличается.

Как правило, в потомстве наблюдается расщепление 1:1,

фенотипы потомства: серое тело, нормальные крылья и черное тело, укороченные крылья .

Не срабатывает закон независимого наследования. Почему же так? Неужели законы Менделя действительно не работают? Конечно же, нет, законы природы, могут быть «нарушены», только если это позволяет другой закон (исключение из правила).

[1]

  • информацию о каждом признаке несет определенный ген;
  • гены находятся в хромосомах.

Естественно, что количество хромосом значительно меньше количества генов, поэтому в одной хромосоме закодировано несколько генов.

Гены, находящиеся в одной хромосоме наследуются вместе, то есть сцеплено.

А гены, находящиеся в разных хромосомах наследуются независимо,

так как при гаметогенезе хромосомы распределяются случайно, следовательно, два несцепленных гена могут попасть вместе в одну гамету гамете, а могут и нет.

Гены, находящиеся в одной хромосоме, обязательно окажутся в одной гамете.

В примере, который мы рассмотрели ранее, мы можем заметить: серое тело наследуется вместе с нормальные крыльями , а черное тело наследуется вместе с укороченными крыльями .

Гены цвета тела и длины крыльев находятся в одной хромосоме.

Самка дигетерозиготна, есть две гомологичные хромосомы:

в одной из гомологичных хромосом закодированы гены серого тела и нормальных крыльев ,

в другой — гены черного тела и укороченных крыльев

Но получается всего два вида гамет — признаки цвета тела и размера крыльев «неделимы»

Отцовская особь по этим признакам дигомозиготная:

в одной гомологичной хромосоме гены черного тела и укороченных крыльев ,

и в другой гомологичной хромосоме так же.

Все признаки, закодированные в одной хромосоме, образуют так называемую группу сцепления .

Признаки из одной группы сцепления наследуются вместе.

И как можно догадаться,

количество групп сцепления равно количеству хромосом в гаплоидном наборе.

Примеры задач

Задача 1:

Немного другое оформление: сцепленные признаки записываются на «палочках», например генотип самки из нашей задачи следует записать вот так:

  • палочки означают гомологичные хромосомы, в которых локализованы гены
  • буквы по одну сторону от палочек обозначают сцепленные друг с другом гены.

То есть запись говорит:

признаки АВ сцеплены друг с другом; признаки ab так же сцеплены друг с другом

  • положение генов в генотипе 1) называется цис-положением: AB \ ab (доминантные признаки на одной хромосоме, рецессивные на другой)
  • положение 2) называется транс-положением: Ab \ aB.
Видео (кликните для воспроизведения).

Разберем на примере:

1) В условии задачи сразу указаны все признаки, заполним таблицу:

2) Первое растение дигетерозиготно, сказано, что доминантные признаки локализованы в одной хромосоме, то есть сцеплены. Причем доминантные признаки находятся на одной гомологичной хромосоме, следовательно на другой гомологичной хромосоме располагаются рецессивные признаки (цис-положение). Генотип первого растения: AB \ ab.

Получаем всего два вида гамет (так как признаки сцеплены):

3) Так как у второго растения проявил ись рецессивные признаки, делаем вывод, что оно дигомозиготно. И его генотип: ab\ab. Образуется только один сорт гамет: ab.

4) Наконец, составим схему скрещивания:

И ответим на последний вопрос задачи — про закон:

проявляется закон сцепленного наследования, он гласит: гены, локализованные в одной хромосоме образуют группу сцепления и наследуются вместе .

Но случается, что даже гены из одной группы сцепления (локализованные в одной хромосоме) наследуются раздельно, то есть «расцепляются».

Для примера, возьмем скрещивание из предыдущей задачи.

При таком же скрещивании может получиться и 4 фенотипические группы (вместо положенных 2) в потомстве, как и при независимом наследовании. Это объясняется возможностью кроссинговера между гомологичными хромосомами (тем, кто не понимает о чем речь, советую прочитать статью кроссинговер ).

Допустим если у особи признаки AB сцеплены, то при образовании гамет, если произойдет кроссинговер, есть вероятность, что участок хромосомы, в котором закодирован один из генов «перескочит» на другую гомологичную хромосому, и сцепление нарушится. На примере нашей задаче, в случае кроссинговера скрещивание будет следующим:

У дигетерозиготного растения образуется еще два сорта гамет, за счет кроссинговера. Гаметы, при образовании которых, произошел кроссинговер (в данной задаче это Ab и aB ) называются кроссоверными . Статистически процент кроссоверных гамет меньше некроссоверных.

Чем дальше друг от друга находятся гены в хромосоме, тем больше вероятность того, что сцепленные гены, будут «разлучены» при рекомбинации, происходящей во время кроссинговера.

И соответственно, чем ближе друг к другу расположены гены в хромосоме, тем вероятность их разъединения.

Эта зависимость вероятности разделения генов кроссинговером и расстояния между генами оказалась настолько «удобной», что расстояние между генами измеряют в процентах вероятности их разъединения при кроссинговере. По формуле:

  • x – вероятность разъединения генов в процентах,
  • а – количество особей, образовавшихся из кроссоверных гамет, n – количество всех особей.
  • И 1% вероятности разъединения генов приняли за единицу расстояния между этими генами.

Единица эта называется морганида. Назвали единицу в честь известного генетика Томаса Моргана, который изучал это явление

1 морганида = 1% вероятности, что сцепленные гены, в результате кроссинговера, окажутся на разных гомологичных хромосомах

Автор закона сцепленного наследования

Сцепление генов — это совместное наследование генов, расположен­ных в одной и той же хромосоме. Количество групп сцепления соответству­ет гаплоидному числу хромосом, то есть у дрозофилы 4; у КРС — 30. Природу сцепленного наследования объяснил в 1910 г. Морган с сотруд­никами. В качестве объекта исследования они избрали плодовую муху дрозофилу, которая оказалась очень удобной моделью для изучения данного фе­номена, так в клетках ее тела, находится только 4 пары хромосом и имеет ме­сто высокая скорость плодовитости (в течение года можно исследовать более 20-ти поколений). Итак, сцепленными признаками называются признаки, которые контролируются генами, расположенными в одной хромосоме. Естественно, что они передаются вместе в случаях полного сцепления (закон Моргана).

Полное сцепление встречается редко, обычно – неполное, из-за влияния кроссинговера (перекрещивания и обмена участками гомологичных хромосом в процессе мейоза). То есть, гены одной хромосомы переходят в другую, гомологичную ей.

Читайте так же:  Перечень документов для регистрации наследства

Частота кроссинговера зависит от расстояния между генами. Чем ближе друг к другу расположены гены в хромосоме, тем сильнее между ними сцепление и тем реже происходит их расхождение при кроссинговере, и, наоборот, чем дальше друг от друга отстоят гены, тем слабее сце пление между ними и тем чаще возможно его нарушение.

На рисунке 1 :

Слева: расстояние между генами А и В маленькое, вероятность разрыва хроматиды именно между А и В невелика, поэтому сцепление полное, хромосомы в гаметах идентичны родительским (два типа), других вариантов не появляется. Справа: расстояние м ежду генами А и В большое, повышается вероятность разрыва хроматиды и последующего воссоединения крест-накрест именно между А и В, поэтому сцепление не
полное, хромосомы в гаметах образуются четырех типов — 2 идентичные родительским (некроссоверные) + 2 кроссоверных варианта.

Пример, основанный на опытах Моргана

Рисунок 2
Фенотипы
А-серое тело, нормальные крылья (повторяет материнскую форму)
Б-тёмное тело, короткие крылья (повторяет отцовскую форму)
В-серое тело, короткие крылья (отличается от родителей)
Г-тёмное тело, нормальные крылья (отличается от родителей)

В и Г получены в результате кроссинговера в мейозе.

«Гены, расположенные в одной хромосоме, наследуются совместно».

Если скрестить мушку дрозофилу, имеющую серое тело и нормальные крылья (на рисунке самка), с мушкой, обладающей тёмной окраской и зачаточными (короткими) крыльями (на рисунке самец), то в первом поколении гибридов все мухи будут серыми с нормальными крыльями (А). Это гетерозиготы по двум парам аллельных генов, причём ген, определяющий серую окраску брюшка, доминирует над тёмной окраской, а ген, обусловливающий развитие нормальных крыльев, — доминирует над геном недоразвитых крыльев.

При анализирующем скрещивании гибрида F1 с гомозиготной рецессивной дрозофилой (Б) подавляющее большинство потомков F2 будет сходно с родительскими формами.

Это происходит потому, что гены, отвечающие за серое тело и нормальные крылья — Сцепленные гены, также как и гены, отвечающие за тёмное тело и короткие крылья, т.е. они находятся в одной хромосоме. наследование сцепленных генов называют — сцепленное наследование.

Сцепление может нарушаться. Это доказывают особи В и Г на рисунке, т. е. если бы сцепление не нарушалось, то этих особей бы не существовало, однако они есть. Это происходит в результате кроссинговера, который и нарушает сцепленность этих генов.

На рисунке 3 опыт Моргана отображен подробно.

Хромосомная теория

Хромосомная теория наследственности

Концепция данной теории заключается в том, что передача наследственной информации в ряду поколений осуществляется путем передачи хромосом, в которых в определенной линейной последовательности расположены гены.

Данная теория была сформулирована в начале XX века. Значительный вклад в ее развитие внес американский генетик Томас Морган.

Рекомендую осознать и запомнить следующие положения хромосомной теории:

  • Гены расположены в хромосомах в линейном порядке
  • Каждый ген занимает в хромосоме определенное место — локус
  • Гены, расположенные в одной хромосоме, образуют группу сцепления
  • Сцепление генов может нарушаться в результате кроссинговера
  • Частота кроссинговера между генами прямо пропорциональна расстоянию между ними
  • Расстояние между генами измеряется в морганидах (1 морганида — 1% кроссинговера)
Группы сцепления

В предыдущей статье были раскрыты суть и применение в задачах III закона Менделя, закона независимого наследования, в основе которого лежат гены, расположенные в разных хромосомах. Но что если гены лежат в одной хромосоме? Такие гены образуют группу сцепления, в этом случае говорят о сцепленном наследовании.

Группа сцепления — совокупность всех генов, расположенных в одной хромосоме, вследствие чего они наследуются совместно. Число групп сцепления равно гаплоидному набору хромосом: у женщины 23 группы сцепления (23 пара — половые хромосомы XX), а у мужчины — 24 группы сцепления (X и Y представляют собой две отдельные группы).

Сцепление генов

Томас Морган в своих экспериментах изучал наследование признаков плодовых мушек дрозофил: серый (A) — черный (a) цвет тела, длинные (B) — зачаточные (b) крылья. В первом эксперименте Морган скрестил чистые линии плодовых мушек: серых с длинными крыльями (AABB) и черных с зачаточными (aabb).

[3]

Только что вы видели первый закон Менделя (единообразия) в действии, правда, в несколько ином варианте — при дигибридном скрещивании. Но суть та же: в первом поколении все особи получаются единообразны по исследуемому признаку, с генотипом AaBb — с серым телом и длинными крыльями.

Далее Морган применил анализирующее скрещивание. Полученную в первом поколении дигетерозиготу (AaBb) он скрестил с черной особью с зачаточными крыльями (aabb). Результат весьма удивил Моргана и его коллег: помимо потомства с ожидаемыми фенотипами (серое тело + длинные крылья, черное тело + зачаточные крылья) были получены особи со смешанными признаками.

Потомство со смешанными признаками подразумевает под собой особи Aabb (серое тело + зачаточные крылья) и aaBb (черные тело + длинные крылья). Но откуда они могли взяться, если гены A и B находятся в одной хромосоме? Значит, образовались еще какие-то дополнительные гаметы, помимо AB и ab?

Объясняя полученные в потомстве фенотипы, которые содержали смешанные признаки, Томас Морган пришел к выводу, что между гомологичными хромосомами произошел кроссинговер, в результате которого образовались гаметы Ab, aB — кроссоверные гаметы.

Очевидно, что в данном случае расстояние между генами A и B было 17 морганид, так как каждой кроссоверной гаметы (соответственно и особей) образовалось по 8.5%. Не забывайте, что процент кроссинговера равен расстоянию между генами. Поскольку расстояние было 17 морганид = 17%, то на каждую из кроссоверных гамет приходится половина — 8.5%

Пример решения генетической задачи №1

«Катаракта и полидактилия у человека обусловлены доминантными аутосомными генами, расположенными в одной хромосоме. Гены полностью сцеплены. Какова вероятность родить здорового ребенка в семье, где муж нормален, жена гетерозиготна по обоим признакам, мать жены также страдала обеими аномалиями, а отец был нормален».

Очень важно обратить внимание на то, что «гены полностью сцеплены» — это говорит об отсутствии кроссинговера, и то, что мы заметили это, обеспечивает верное решение задачи.

Самое главное, что вам следует усвоить: поскольку гены полностью сцеплены (кроссинговер отсутствует), женщина с генотипом AaBb может образовать только два типа гамет — AB, ab. Кроссоверные гаметы (Ab, aB) не образуются. Всего возможных генотипов потомков получается два, из которых здоров только один — aabb. Шанс родить здорового ребенка в такой семье ½ (50%).

Читайте так же:  Порядок наследования имущества по закону
Пример решения генетической задачи №2

«Гены доминантных признаков катаракты и эллиптоцитоза локализованы в 1-й аутосоме. Гены неполностью сцеплены. Женщина, болеющая катарактой и эллиптоцитозом, отец которой был здоров, выходит замуж за здорового мужчину. Определите возможные фенотипы потомства и вероятность рождения больного обеими аномалиями ребенка в этой семье».

Ключевые слова в тексте этой задачи, на которые следует обратить внимание: «гены неполностью сцеплены». Это означает, что между ними происходит кроссинговер.

Генотип женщины остается неясен из текста задачи. Раз она больна, то он может быть: AaBb, AABB, AABb, AaBB. Однако в тексте дано то, что развеет сомнения: «отец которой был здоров». Если ее отец был здоров, то его генотип был aabb, значит он передал дочери гамету ab. Теперь становится очевидно, что генотип дочери AaBb — она дигетерозиготна.

В данном случае между генами A и B произошел кроссинговер, их сцепление нарушилось. В результате образовались кроссоверные гаметы Ab, aB — которые привели к образованию особей с со смешанными признаками (Aabb, aaBb). Вероятность рождения в этой семье ребенка, больного обеими аномалиями, составляет ¼ (25%).

Наследование, сцепленное с полом

Половые хромосомы X и Y определяют пол человека. Генотип XX характерен для женщин, а XY — для мужчин. Мужская Y-хромосома не содержит аллелей многих генов, которые есть в X-хромосоме, вследствие этого наследственными заболеваниями, сцепленными с полом, чаще болеют мужчины.

Природа, несомненно, бережет женских особей. Женщины имеют две гомологичные хромосомы XX, и если ген наследственного заболевания попал в одну из X-хромосом, то чаще всего в другой X-хромосоме окажется «здоровый» ген, доминантный, которой подавит действие рецессивного гена. С генетической точки зрения, женщина будет носительницей заболевания, может его передать по поколению, но сама болеть не будет.

У мужчин если ген заболевания оказался в X-хромосоме, то не проявиться он не может. Именно по этой причине мужчины чаще страдают дальтонизмом, гемофилией и т.д.

Не у всех организмов особь мужского пола характеризуется набором хромосом XY, а женского — XX. У пресмыкающихся, птиц, бабочек женские особи имеют гетерогаметный пол- XY, а мужские — XX. То же самое относится к домашним курам: петух — XX, курица — XY.

Решим несколько задач по теме наследования, сцепленного с полом. Речь в них будет идти о сцепленных с полом признаками — признаками, гены которых лежат не в аутосомах, а в гетеросомах (половых хромосомах).

Пример решения генетической задачи №3

«Рецессивный ген дальтонизма располагается в X-хромосоме. Женщина с нормальным зрением (отец был дальтоник) выходит замуж за мужчину с нормальным зрением, отец которого был дальтоником. Определите возможные фенотипы потомства».

Подробности о родословной важны и помогают заполнить белые пятна. Если отец женщины был дальтоником (X d Y), то очевидно, что он передал ей хромосому X d , так как от отца дочери всегда передается X-хромосома. Значит женщина гетерозиготна по данному признаку, а у мужчины возможен лишь один вариант здорового генотипа — X D Y. То, что его отец был дальтоником несущественно, ведь отец всегда передает сыну Y-хромосому.

Возможные фенотипы потомства:

  • X D X D — здоровая девочка
  • X D X d — девочка носительница рецессивного гена дальтонизма
  • X D Y — здоровый мальчик
  • X d Y — мальчик, который болен дальтонизмом
Пример решения генетической задачи №4

«Гипоплазия зубной эмали наследуется как сцепленный с X-хромосомой доминантный признак, шестипалость — как аутосомно-доминантный. В семье, где мать шестипалая, а у отца гипоплазия, родился пятипалый здоровый мальчик. Напишите генотипы всех членов семьи по данным признакам. Возможно ли у них рождение ребенка с двумя аномалиями одновременно?»

Ответ на вопрос: «Каковы генотипы матери и отца?» — лежат в потомстве. Пятипалый здоровый мальчик имеет генотип aaX b Y. Чтобы сформировался такой генотип, от матери должна прийти гамета aX b , а от отца — aY. Выходит, что единственно возможный генотип матери — AaX b X b , а генотип отца — aaX B Y.

Рождение ребенка с двумя аномалиями возможно — AaX B X b , вероятность такого события ¼ (25%).

Пример решения генетической задачи №5

«Рецессивные гены, кодирующие признаки дальтонизма и гемофилии, сцеплены с X-хромосомой. Мужчина, больной гемофилией, женится на здоровой женщине, отец который был дальтоником, но не гемофиликом. Какое потомство получится от брака их дочери со здоровым мужчиной?»

Генотип мужчины вопросов не вызывает, так как единственный возможный вариант — X hD Y. Генотип женщины дает возможность узнать ее отец (X Hd Y), который передал ей гамету X Hd (отец всегда передает дочке X хромосому, а сыну — Y), следовательно, ее генотип — X HD X Hd

Как оказалось, возможны два варианта генотипа дочери: X HD X hD , X Hd X hD . Генотип здорового мужчины X HD Y. Следуя логике задачи, мы рассмотрим два возможных варианта брака.

Не забывайте, что на экзамене схема задачи не является ответом. Ответ начинается только после того, как вы напишите слово «Ответ: . «. В ответе должны быть указаны все фенотипы потомства, их описание, что возможно покажется рутинными при большом числе потомков, но весьма приятным, если вы верно решили задачу и получили за нее заслуженные баллы 🙂

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Лекция № 18. Сцепленное наследование

В 1906 году У. Бэтсон и Р. Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве, гибриды всегда повторяли признаки родительских форм. Стало ясно, что не для всех признаков характерно независимое распределение в потомстве и свободное комбинирование.

Читайте так же:  Можно ли восстановить срок вступления наследства

Каждый организм имеет огромное количество признаков, а число хромосом невелико. Следовательно, каждая хромосома несет не один ген, а целую группу генов, отвечающих за развитие разных признаков. Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался Т. Морган. Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила.

Дрозофила каждые две недели при температуре 25 °С дает многочисленное потомство. Самец и самка внешне хорошо различимы — у самца брюшко меньше и темнее. Они имеют всего 8 хромосом в диплоидном наборе, достаточно легко размножаются в пробирках на недорогой питательной среде.

Скрещивая мушку дрозофилу с серым телом и нормальными крыльями с мушкой, имеющей темную окраску тела и зачаточные крылья, в первом поколении Морган получал гибриды, имеющие серое тело и нормальные крылья (ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обусловливающий развитие нормальных крыльев, — над геном недоразвитых). При проведении анализирующего скрещивания самки F1 с самцом, имевшим рецессивные признаки, теоретически ожидалось получить потомство с комбинациями этих признаков в соотношении 1:1:1:1. Однако в потомстве явно преобладали особи с признаками родительских форм (41,5% — серые длиннокрылые и 41,5% — черные с зачаточными крыльями), и лишь незначительная часть мушек имела иное, чем у родителей, сочетание признаков (8,5% — черные длиннокрылые и 8,5% — серые с зачаточными крыльями). Такие результаты могли быть получены только в том случае, если гены, отвечающие за окраску тела и форму крыльев, находятся в одной хромосоме.

1 — некроссоверные гаметы; 2 — кроссоверные гаметы.

Если гены окраски тела и формы крыльев локализованы в одной хромосоме, то при данном скрещивании должны были получиться две группы особей, повторяющие признаки родительских форм, так как материнский организм должен образовывать гаметы только двух типов — АВ и аb , а отцовский — один тип — аb . Следовательно, в потомстве должны образовываться две группы особей, имеющих генотип ААВВ и ааbb . Однако в потомстве появляются особи (пусть и в незначительном количестве) с перекомбинированными признаками, то есть имеющие генотип Ааbb и ааВb . Для того, чтобы объяснить это, необходимо вспомнить механизм образования половых клеток — мейоз. В профазе первого мейотического деления гомологичные хромосомы конъюгируют, и в этот момент между ними может произойти обмен участками. В результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В , появляются гаметы Аb и аВ , и, как следствие, в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов. Но, поскольку кроссинговер происходит при образовании небольшой части гамет, числовое соотношение фенотипов не соответствует соотношению 1:1:1:1.

Группа сцепления — гены, локализованные в одной хромосоме и наследующиеся совместно. Количество групп сцепления соответствует гаплоидному набору хромосом.

Сцепленное наследование — наследование признаков, гены которых локализованы в одной хромосоме. Сила сцепления между генами зависит от расстояния между ними: чем дальше гены располагаются друг от друга, тем выше частота кроссинговера и наоборот. Полное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются так близко друг к другу, что кроссинговер между ними становится невозможным. Неполное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются на некотором расстоянии друг от друга, что делает возможным кроссинговер между ними.

[2]

Независимое наследование — наследование признаков, гены которых локализованы в разных парах гомологичных хромосом.

Некроссоверные гаметы — гаметы, в процессе образования которых кроссинговер не произошел.

Образуются гаметы:

Кроссоверные гаметы — гаметы, в процессе образования которых произошел кроссинговер. Как правило кроссоверные гаметы составляют небольшую часть от всего количества гамет.

Образуются гаметы:

Нерекомбинанты — гибридные особи, у которых такое же сочетание признаков, как и у родителей.

Рекомбинанты — гибридные особи, имеющие иное сочетание признаков, чем у родителей.

Расстояние между генами измеряется в морганидах — условных единицах, соответствующих проценту кроссоверных гамет или проценту рекомбинантов. Например, расстояние между генами серой окраски тела и длинных крыльев (также черной окраски тела и зачаточных крыльев) у дрозофилы равно 17%, или 17 морганидам.

У дигетерозигот доминантные гены могут располагаться или в одной хромосоме (цис-фаза), или в разных (транс-фаза).

1 — Механизм цис-фазы (некроссоверные гаметы); 2 — механизм транс-фазы (некроссоверные гаметы).

Результатом исследований Т. Моргана стало создание им хромосомной теории наследственности:

  1. гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов; набор генов каждой из негомологичных хромосом уникален;
  2. каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;
  3. гены расположены в хромосомах в определенной линейной последовательности;
  4. гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;
  5. сцепление генов может нарушаться в процессе кроссинговера, что приводит к образованию рекомбинантных хромосом; частота кроссинговера зависит от расстояния между генами: чем больше расстояние, тем больше величина кроссинговера;
  6. каждый вид имеет характерный только для него набор хромосом — кариотип.

Перейти к лекции №17 «Основные понятия генетики. Законы Менделя»

Перейти к лекции №19 «Генетика пола»

Видео (кликните для воспроизведения).

Смотреть оглавление (лекции №1-25)

Источники

Литература


  1. Ванская, Г.П. Библиотечно-библиографическая классификация. Средние таблицы. Практическое пособие. Выпуск 2: 65/68 У/Ц Экономика. Экономические науки; Политика. Политология; Право. Юридические науки; Военное дело. Военная наука / Г.П. Ванская. — М.: Либерея, 2017. — 883 c.

  2. Саблин, М. Т. Взыскание долгов. От профилактики до принуждения. Практическое пособие / М.Т. Саблин. — М.: КноРус, 2014. — 416 c.

  3. Ильин, В. А. История и методология физики. Учебник / В.А. Ильин, В.В. Кудрявцев. — М.: Юрайт, 2014. — 580 c.
  4. Арсеньев К. К. Заметки о русской адвокатуре; Автограф — М., 2013. — 560 c.
Автор закона сцепленного наследования
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here