Цитологические основы законов наследования

Сегодня мы подготовили статью: "Цитологические основы законов наследования" на основе авторитетных источников. Если в процессе прочтения возникнут вопросы, обращайтесь к дежурному консультанту.

Закономерности наследования, установленные Г. Менделем, их цитологические основы (моно- и дигибридное скрещивание)

В результате многочисленных скрещиванием Г. Менделем растений, относящихся к чистым линиям, были выведены несколько закономерностей наследования генов.

Моногибридное скрещивание

Моногибридным называется такое скрещивание, в результате которого изучается проявление одного признака. При этом прослеживаются наследственные закономерности пары вариантов по одному признаку. Развитию данных проявлений способствуют пары аллельных генов.

К примеру, признак «окраски венчика цветка» гороха может проявляться в двух вариациях: белый и красный. Другие признаки, присущие данным организмам, во внимание не берутся.

Схемой моногибридного скрещивания является:

Здесь четко прослеживается проявление первого закона Г. Менделя (единообразие гибридов первого поколения). Скрещивают два растения гороха, отличающихся окраской семян. А – желтые (доминантный признак), а – зеленые (рецессивный признак). Все гибриды первого поколения проявляют доминантный признак — желтые семена. При этом не берется во внимание, какое из растений давало пыльцу, а какое являлось «ее приемником». Аналогичные результаты получались, когда скрещивали другие растения, различающиеся также на один признак.

На основе полученных результатов Г. Мендель сформировал свой первый закон: Скрещивание гомозиготных родительских форм, которые различаются по одному альтернативному признаку, гибриды первого поколения в генотипе и фенотипе проявляют единообразие.

От самоопыления (скрещивания) полученных гибридов первого поколения между собой был получен следующий результат:

  • 2001 штук (зеленые семена);
  • 6022 штук (желтые семена).

Приблизительно полученное соотношение равно 1:3 или 3:1. Обнаруженную закономерность назвали законом расщепления (второй закон Менделя). Его трактовка такова: Скрещивание гетерозиготных гибридов, полученных в первом поколении, приводит к преобладанию во втором поколении признаков по соотношению 1:2:1 (генотип) и 3:1(фенотип).

Для определения генотипа особи, полученной от перекрестного скрещивания, часто прибегают к анализирующему скрещиванию. Анализирующим скрещивание называют скрещивание, когда неизвестный генотип скрещивают с гомозиготным по рецессивному гену организмом.

Становится виден механизм расщепления гомозиготных особей по доминантному гену. Полученные результаты привели Г. Менделя к выводу, что не происходит смешивания наследственных факторов при образовании гибридов, но сохраняется их неизменный вид. Так как возникновению между поколениями связей помогают гаметы, то вероятнее всего, что при их образовании происходит попадание только одного фактора из пары. Оплодотворение же способствует восстановлению пары. Такое предположение назвали правилом чистоты гамет.

Правило чистоты гамет: Гаметогенез приводит к разделению генов у одной пары.

Несмотря на это, очевидно, что существующие между живыми организмами отличия базируются на наличии многих признаков, поэтому для установления наследственных закономерностей необходим анализ пары и более признаков по потомству.

Дигибридное скрещивание

Дигибридным скрещиванием именуют скрещивание организмов, которые различаются по двум признакам. В случае скрещивания форм, отличающихся по большему количеству признаков, употребляют термин – полигибридное скрещивание.

Схематично дигибридное скрещивание выглядит так:

Г. Мендель скрещивал между собой две чистые линии гороха, которые различались по двум признакам:

  • форме (морщинистые и гладкие);
  • цвету (зеленые и желтые).

Данное скрещивание подразумевает определение признаков разными парами генов: одна отвечает за форму, а другая — за окраску. Гладкая форма семян (В) преобладает над морщинистой (b), а желтые горошины (А) доминируют над зелеными (а).

Как видно из приведенной схемы, образовалось несколько комбинаций гамет для простоты представления которых, рекомендуется пользоваться решеткой американского генетика – Пеннета. Она позволяет наглядно представить все виды комбинаций генов в гаметах и результаты их слияния.

Горизонтальная часть такой таблицы отражает мужские гаметы, а женские записаны в вертикальном столбце. Таким образом, образуется 4 вида гамет: АВ, Аb, аВ и аb. При этом количество зигот, которые могут возникнуть при случайном слиянии этих гамет, равно 4*4=16. Именно столько клеток и отражает решетка Пеннета.

Приведенная таблица отражает 9 видов генотипов, повторяющихся в 16 сочетаниях. Эти 9 генотипов проявляются в виде 4 фенотипов:

  1. желтые, гладкие;
  2. желтые, морщинистые;
  3. зеленые, гладкие;
  4. зеленые, морщинистые.

Численно представленное соотношение выглядит так: 9 желтых, гладких : 3 желтых, морщинистых : 3 зеленых, гладких : 1 зеленый, морщинистый.

При отдельном рассмотрении полученных результатов, видно, что по каждому из изученных признаков сохраняется соотношение 3:1, характерное моногибридному скрещиванию. Из этого, Г.Мендель заключил, что в результате дигибридного скрещивания признаки и гены наследуются независимо друг от друга. Данный вывод стали именовать «законом независимого наследования признаков», который действует при расположении генов по разным хромосомам.

Формулировка данного закона звучит так: каждой паре аллельных генов (с альтернативными признаками) свойственно независимое друг от друга наследование.

[3]

Основу комбинативной изменчивости, передающейся по наследству, составляет «закон независимого комбинирования генов», работающий у живых организмов в результате их скрещивания. Стоит отметить, что закономерности дигибридного скрещивания работают исключительно для генов, которые локализованны в разных парах гомологичных хромосом. Причиной этому служит независимое друг от друга комбинирование в клетке негомологичных хромосом.

Дигибридное скрещивание имеет и цитологические основы. Так, в профазу I мейоза гомологичным хромосомам свойственна конъюгация и расхождение в анафазе. Расхождение хромосом происходит от средней части клетки (экватор), причем к каждому полюсу отходит по одной хромосоме. В результате такого расхождения происходит независимое комбинирование негомологичных хромосом в свободном и независимом порядке. Оплодотворение приводит к восстановлению в зиготе диплоидного хромосомного набора, в результате чего гомологичные хромосомы, оказавшиеся в процессе мейоза в разных половых клетках родителей, соединяются вновь.

Таким образом, закон независимого наследования признаков демонстрирует дискретный характер генов. Это видно в ходе независимого комбинирования аллелей у разных генов. Дискретностью гена определяют свойство, которое заключается в его контролировании благодаря наличию либо отсутствию специальной биохимической реакции, которая влияет на подавление либо развитие определенных признаков внутри живого организма. Вероятнее всего, что несколько генов определяют какое-либо одно свойство или один признак (длина колосьев пшеницы, окраска глаз дрозофилы, форма куриных гребней и прочее).

http://bingoschool.ru/manual/303/

Закон Менделя. Цитологические основы универсальности законов Менделя.

Третий закон Менделя, или закон независимого наследования признаков.

Читайте так же:  Завещание на внучку кто может оспорить

Изучая расщепления при дигибридном скрещивании, Мендель обратил внимание на следующее обстоятельство. При скрещивании растений с желтыми гладкими (ААВВ) и зелеными морщинистыми (ааbb) семенами во втором поколении появлялись новые комбинации признаков: желтые морщинистое (Ааbb) и зеленые гладкие (ааВb), которые не встречались в исходных формах. Из этого наблюдения Мендель сделал вывод, что расщепление по каждой признаку происходит независимо от второго признака. В этом примере форма семян наследовалась независимо от их окраски. Эта закономерность получила название третьего закона Менделя, или закона независимого распределения генов.
Третий закон Менделя формулируется следующим образом: при скрещивании гомозиготных особей, отличающихся по двум (или более) признаках, во втором поколении наблюдаются независимое наследование и комбинирование состояний признаков, если гены, которые их определяют, расположенные в разных парах хромосом. Это возможно потому, что во время мейоза распределение (комбинирования) хромосом в половых клетках при их созревании идет независимо и может привести к появлению потомства с комбинацией признаков, отличных от родительских и прародительский особей.

Цитологические основы законов Менделя базируются на:

1) парности хромосом (парности генов, обусловливающих возможность развития какого-либо признака)

2) особенностях мейоза (процессах, происходящих в мейозе, которые обеспечивают независимое расхождение хромосом с находящимися на них генами к разным пблюсам клетки, а затем и в разные гаметы)

3) особенностях процесса оплодотворения (случайного комбинирования хромосом, несущих по одному гену из каждой аллельной пары)

Аллельные гены. Определение. Формы взаимодействия. Множественный аллелизм. Примеры. Механизм воздействия.

Генотип – это не простая сумма генов, а сложная система взаимодействующих между собой дискретных единиц наследственной информации. Так, у крупного рогатого скота признак окраски шерсти контролируется 12 парами генов, у мухи дрозофилы признак окраски глаз – 20 парами генов. Даже в самом простом варианте в определении признака участвуют как минимум два гена.

Наряду с функциональной классификацией генов они подразделяются еще нааллельные и неаллельные

Аллельными

называются гены, которые определяют контрастирующие (альтернативные) свойства одного признака и расположены в гомологичных хромосомах в одном и том же локусе.

Аллельные гены принято обозначать одной буквой латинского алфавита: А, а.

Неаллельные гены определяют разные признаки, расположены в разных (негомологичных) хромосомах или в разных локусах одной хромосомы. Они обозначаются разными буквами латинского алфавита: А, В, С или а, b, c.

Взаимодействовать между собой могут как аллельные, так и неаллельные гены.

Взаимодействие аллельных генов

Различают следующие виды взаимодействия аллельных генов:

· полное доминирование,

· неполное доминирование,

· сверхдоминирование,

· кодоминирование,

[1]

· межаллельная комплементация,

· аллельное исключение.

Полное доминирование

При полном доминировании действие одного гена (одного аллеля) из аллельной пары полностью скрывает присутствие в генотипе другого гена (аллеля). Фенотипически проявляемый ген называется доминантным и обозначается – А;подавляемый ген называется рецессивным и обозначается – а. Впервые это явление открыто Г. Менделем в опытах на горохе. Признаки, подчиняющиеся законам Менделя, называются менделирующими.

Г. Мендель сформулировал три закона:

I – закон единообразия

;

II – закон расщепления

;

III – закон независимого наследования (расщепления)

.

Два первых закона относятся к моногибридному скрещиванию, третий — к ди- и полигибридному скрещиванию.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8755 — | 7560 — или читать все.

http://studopedia.ru/19_241334_zakon-mendelya-tsitologicheskie-osnovi-universalnosti-zakonov-mendelya.html

Закономерности наследственности, их цитологические основы

Наследование генов имеет разную природу проявления и возникновения. Часто это происходит на клеточном (цитологическом) уровне. На уровне половых клеток (гамет) осуществляется связь между поколениями в результате полового размножения. Развитие разных признаков заложено внутри генов.

  • А – доминантное проявление признака, заложенного внутри гена
  • а – рецессивное проявление признака, заложенного внутри гена

Тогда, гибрид с генотипом «Аа» является гетерозиготным, так как содержит внутри доминантный и рецессивный ген. Проявляться в фенотипе будет только доминантный ген А. Помимо этого могут возникать другие комбинаций:

  • АА (гомозиготный доминантный);
  • аа (гомозиготный рецессивный);.

Обычно возникает четыре комбинации от скрещивания А и а: 2Аа, 1АА и 1аа.

Гетерозготными организмами по данной паре признаков являются особи с разными гаметами (несут не одинаковые гены данной пары), что приводит к возникновению расщепления признаков внутри потомства.

Гомозиготными организмами по данной паре признаков являются особи, образующие один сорт гамет, не дающий расщепления признаков.

Согласно гипотезе о чистоте гамет можно сделать вывод, что законом расщепления служит результат случайного сочетания половых клеток с разными генами.

1-й закон Менделя «Единообразие гибридов первого поколения»

После многочисленных скрещиваний Г. Менделем сортов гороха, отличающихся по одному признаку, полученные статистические данные привели его к открытию данного закона.

1-й закон Менделя: Скрещивание гомозиготных растений, которые различаются по одной паре альтернативных признаков, приводит к проявлению единообразия у всех гибридов первого поколения.

При решении соответствующих задач пользуются следующими обозначениями:

  • Р – родители
  • ♀ — женская особь
  • ♂ — мужская особь
  • G – гаметы
  • F – гибриды

Задача №1: Каким будет потомство от скрещивания двух гомозиготных растений гороха, имеющих гладкие и морщинистые семена?

Гладкие семена Морщинистые семена

F: Аа – 100% (генотип)

Такое решение ожидается при полном доминировании признака. Когда имеет место неполное доминирование (неполное проявление признака) возможно проявление среднего значения между признаками. Так, от слияния красно-цветковых и бело-цветковых растений львиного зева в потомстве 25% особей были красными, 25% — белыми, а 50% — розовыми.

http://bingoschool.ru/manual/302/

Наследственность. Законы наследственности открытые Менделем. Цитологические основы законов Менделя

Насле́дственность — способность организмов передавать свои признаки и особенности развития потомству. Благодаря этой способности все живые существа сохраняют в своих потомках характерные черты вида. Такая преемственность наследственных свойств обеспечивается передачей генетической информации.

Закон единообразия гибридов первого поколения

Г. Менделю не было известно, где находятся открытые им «наследственные задатки» (гены) и что они собой представляют. В 1910-м американский биолог Томас Хант Морган (1866-1945) и его последователи создали и обосновали хромосомную теорию наследственности. Согласно этой теории, гены расположены в хромосомах, в клеточном ядре. Научная школа Моргана выяснила цитологические основы законов Менделя. В каждой клетке взрослого организма (за исключением половых клеток) имеется двойной набор хромосом. Половина этих хромосом получена от отца, половина — от матери. В половые клетки попадает только одинарный набор хромосом. Это происходит при мейозе. У гибридов (гетерозиготных особей) примерно 50% половых клеток несут только доминантный ген (А), остальные — только рецессивный (а). Встреча и слияние двух половых клеток происходит на основании случайности. Каким же окажется потомство двух таких гибридов? Очевидно, что по теории вероятности половина потомства окажется гетерозиготной (Аа и аА), а половина — гомозиготной (АА и аа). Но только четверть потомства, несущая гены аа, проявит рецессивный признак. Отсюда и открытое Менделем соотношение «три к одному».

Читайте так же:  Иск о фактическом принятии наследства образец

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8763 — | 8293 — или читать все.

http://studopedia.ru/20_11378_nasledstvennost-zakoni-nasledstvennosti-otkritie-mendelem-tsitologicheskie-osnovi-zakonov-mendelya.html

Цитологические основы закономерностей наследования.

Гипотеза чистоты гамет. Статистический характер закона расщепления. В чем причина расщепления? Почему при гибридизации не возникает стойких гибридов, а наблюдается расщепление в строго определенных численных соотношениях? Для объяснения явления расщепления Мендель предложил гипотезу чистоты гамет, которая в дальнейшем получила полное подтверждение в цитологических исследованиях.

Связь между поколениями при половом размножении осуществляется через половые клетки (гаметы). Очевидно, гаметы несут материальные наследственные факторы – гены, которые определяют развитие того или иного признака. Обозначим ген, определяющий доминантный признак, какой-либо заглавной буквой алфавита (например, А), а соответствующий ему рецессивный ген – малой буквой (соответственно а). Обозначим соединение гамет, несущих гены А и а, знаком умножения: А*а=Аа. Как видно, возникающая в результате гетерозиготная форма (F1) имеет оба гена, как доминантный, так и рецессивный – Аа. Гипотеза чистоты гамет, утверждает, что у гибридной (гетерозиготной) особи половые клетки чисты, т. е. имеют по одному гену из данной пары. Это означает, что у гибрида Аа будут в равном числе возникать гаметы с геном А (доминантный ген) и с геном а (рецессивный ген). Какие же между ними возможны сочетания? Очевидно, равновероятны четыре комбинации, поясняемые следующей схемой (значок означает мужские гаметы, а значок – женские).

В результате четырех комбинаций получатся сочетания АА, Аа, аА и аа, иначе, АА, 2Аа и аа. Первые три сочетания дадут особей с доминантным признаком, четвертое – с рецессивным. Гипотеза чистоты гамет удовлетворительно объясняет причину расщепления и наблюдаемые при этом численные соотношения. Вместе с тем становятся ясны и причины различия в отношении дальнейшего расщепления особей с доминантными признаками в третьем и последующих поколениях гибридов. Особи с доминантными признаками по своей наследственной природе неоднородны. Одна из трех (АА), очевидно, будет давать гаметы только одного сорта (А) и, следовательно, при самоопылении или скрещивании с себе подобными не будет расщепляться. Две другие (Аа) дадут гаметы двух сортов, в их потомстве будет происходить расщепление в тех же численных соотношениях, что и у гибридов второго поколения. Когда полного доминирования не наблюдается и гибриды носят промежуточный характер, особи наследственного состава Аа отличаются от гомозиготных форм не только по наследственной структуре, но и по видимым признакам.

Исходя из гипотезы чистоты гамет, мы можем углубить понятия гомозиготы и гетерозиготы. Гомозиготами по данной паре признаков называют такие особи, которые образуют лишь один сорт гамет, и поэтому при самоопылении или скрещивании с себе подобными в потомстве не дают расщепления. Гетерозиготы дают разные гаметы (несущие разные гены данной пары), и поэтому в их потомстве наблюдается расщепление.

Гипотеза чистоты гамет устанавливает, что закон расщепления есть результат случайного сочетания гамет, несущих разные гены. Соединится ли гамета, несущая ген А, с другой гаметой, несущей ген А или же а, при условии равной жизнеспособности гамет и равного их количества, одинаково вероятно.

При случайном характере соединения гамет общий результат оказывается закономерным. Здесь видна статистическая закономерность, определяемая большим числом равновероятных встреч гамет.

http://ebiology.ru/citologicheskie-osnovy-zakonomernostej-nasledovaniya/

Цитологические основы законов Менделя.

Первый закон Менделя.

Прежде чем проводить опыты, Г. Мендель получил чи­стые линии растений гороха с альтернативными признаками: гомозиготные доминантные (АА, с желтыми семенами) и гомозиготные рецессивные (аа, с зелеными семенами) особи, которые в дальнейшем скрещивались друг с другом.

При анализе результатов скрещивания оказалось, что все потомки в первом поколении одинаковы по фенотипу (желтые) и генотипу (гетерозиготны) — закон единообразия гибридов первого поколения( первый закон). Он формулируется следующим образом: при скрещивании гомозиготных особей, анализиру­емых по одной паре альтернативных признаков, наблюдает­ся единообразие гибридов первого поколения как по феноти­пу, так и по генотипу.

Условия выполнения первого закона Менделя.

Для проявления законов Менделя необходимо соблю­дение следующих условий;

— доминирование должно быть полным;

— должна быть равная вероятность образования гамет и зигот разного типа и равная вероятность выживания по­томков с разными генотипами (не должно быть летальных генов).

Гипоте­за чистоты гамет.

Для объяснения установленных Менделем закономер­ностей наследования У. Бэтсоном была предложена гипоте­за чистоты гамет. Кратко ее можно свести к следующим положениям: 1) у гибридного организма гены не гибридизируются (не смешиваются), а остаются в чистом аллельном состоянии; 2) в процессе мейоза в гамету попадает только один ген из аллельной пары.

Промежуточный характер наследования.

Доминантный ген не всегда полностью подавляет про­явление рецессивного гена. В этом случае гибриды первого поколения не воспроизводят признаки родителей — имеет место промежуточный характер наследования. Во втором поколении доминантные гомо- и гетерозиготы будут отличаться фенотипически и расщепление по фенотипу и генотипу будет одинаковым (1:2:1).

Например, при скрещивании гомозиготных растений ноч­ной красавицы с красными (АА) и белыми (аа) цветками первое поколение получается с розовыми цветками (проме­жуточное наследование). Во втором поколении расщепле­ние по фенотипу и по генотипу, будет: 1 часть растений с красными цветками (доминантные гомозиготы), две — с розовыми (гетерозиготы) и одна — с белыми (рецессивные гомозиготы).

Р АА х аа Р Аа х Аа

Крас. Бел. Роз. Роз.

G А а G А а А а

Видео (кликните для воспроизведения).

Роз. Кр. Роз. Роз. Бел.

Читайте так же:  Заявление о праве на наследство образец

Второй закон Менделя.

При скрещивании гибридов первого поколения между собой (т.е. гетерозиготных особей) получается следующий ре­зультат:

Каждая из гетерозигот образует по два типа гамет, т.е. возможно получение четырех их сочетаний: 1АА, 2Аа, 1аа, вероятность образования которых равная. По фенотипу особи АА и Аа неотличимы (желтые), поэтому наблюдается расщепление в отношении 3:1 (три части потомков с желты­ми семенами и одна часть с — зелеными). По генотипу соот­ношение будет: 1АА (одна часть растений — гомозиготы по доминантному признаку): 2Аа (две части растений — гетерозиготы) : 1 аа (одна часть растений — гомозиготы по ре­цессивному признаку).

Второй закон Менделя — закон расщепления — форму­лируется следующим образом: при скрещивании гетерозигот­ных особей, анализируемых по одной паре альтернативных признаков, наблюдается расщепление в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.

Условия выполнения второго закона Менделя.

Для проявления законов Менделя необходимо соблю­дение следующих условий;

— доминирование должно быть полным;

— должна быть равная вероятность образования гамет и зигот разного типа и равная вероятность выживания по­томков с разными генотипами (не должно быть летальных генов);

Гипоте­за чистоты гамет.

Для объяснения установленных Менделем закономер­ностей наследования У. Бэтсоном была предложена гипоте­за чистоты гамет. Кратко ее можно свести к следующим положениям: 1) у гибридного организма гены не гибридизируются (не смешиваются), а остаются в чистом аллельном состоянии; 2) в процессе мейоза в гамету попадает только один ген из аллельной пары.

Цитологические основы законов Менделя.

Цитологические основы законов Менделя составляют закономерности расхождения гомологичных хромосом и хроматид и образования гаплоидных половых клеток в процессе мейоза и случайное сочетание гамет при оплодотворении.

Анализи­рующее скрещивание.

[2]

Для установления генотипа особи с доминантным признаком при полном доминировании применяют анализи­рующее скрещивание. Для этого данный организм скрещива­ют с рецессивным гомозиготным по данной аллели. Возмож­ны два варианта результатов скрещивания:

1) Р АА х аа 2) Р Аа х аа

Если в результате скрещивания получается единообразие гибридов первого поколения, то анализируемая особь явля­ется гомозиготной, а если в F1 произойдет расщепление при­знаков 1:1, то — гетерозиготной.

Третий закон Менделя.

Если у родительских форм учитывают две пары альтернативных признаков, скрещивание называет­ся дигибридным.

Изучив наследование одной пары аллелей, Мендель проследил наследование двух признаков одновременно. С этой целью он использовал гомозиготные растения гороха, отличающиеся по двум парам альтернативных признаков: семена желтые гладкие (А, В — доминантные признаки) и зеленые морщинистые (a, b — рецессивные признаки).

Жел., глад. Зел., морщ.

F1 АаВb —- Жел. глад.

В результате такого скрещивания в первом поколении он получил растения, у которых все семена были желтые глад­кие. Этот результат подтверждает, что закон единообразия гиб­ридов первого поколения проявляется не только при моно­гибридном скрещивании, но и при дигибридном.

Полученные гибриды первого поколения (АаВЬ) будут давать четыре типа гамет в равном соотношении.

Следовательно, возможно 16 вариантов их сочетаний. Для удобства записи пользуются решеткой Пеннета, в кото­рой по горизонтали записывают женские гаметы, а по верти­кали — мужские:

P(Fi) АаВb Х АаВb

Жел .глад. Жел .глад

G АВ Аb аВ аb АВ Аb аВ аb

АВ Ab аВ ab
АВ ААВВ ААВЬ АаВВ АаВЬ
АЬ ААВЬ AAbb АаВЬ Aabb
аВ АаВВ АаВЬ ааВВ ааВЬ
ab АаВЬ Aabb ааВЬ aabb

F2 9 А-В-; З А-bb; З ааВ- ; l aabb

Краткая запись генотипа (А-В-) применяется для обозна­чения фенотипа особи, так как независимо от второй аллели (А или а) фенотип особи будет доминантный (желтый). Лег­ко подсчитать, что по фенотипу потомство делится на 4 груп­пы: 9 частей растений с желтыми гладкими семенами (А-В-), 3 части — с желтыми морщинистыми (A-bb), 3 части с зеле­ными гладкими (ааВ-) и 1 часть — с зелеными морщинисты­ми (aabb). Если учесть расщепление по одной паре призна­ков (желтый и зеленый цвет, гладкая и морщинистая поверх­ность), то получится: 9+3 особи с желтыми (гладкими) и 3 + 1 особи с зелеными (морщинистыми) семенами. Их соотно­шение равно 12:4, или 3:1. Следовательно, при дигибридном скрещивании каждая пара признаков в потомстве дает рас­щепление независимо от другой пары, как и при моногиб­ридном скрещивании. При этом происходит случайное ком­бинирование генов, приводящее к новым сочетаниям признаков, которых не было у родительских форм. В нашем приме­ре исходные растения гороха имели желтые гладкие и зеленые морщинистые семена, а во втором поколении, кроме та­ких сочетаний признаков, получены растения с желтыми мор­щинистыми и зелеными гладкими семенами.

Отсюда следует третий закон Менделя — закон независи­мого комбинирования признаков: при скрещивании гомозиготных особей, анализируемых по двум или нескольким парам альтернативных признаков, во втором поколении наблюда­ется независимое комбинирование генов разных аллельных пар и соответствующих им признаков.

http://poisk-ru.ru/s22660t2.html

Законы наследования Менделя, их цитологическое и цитогенетическое доказательство. Примеры

Первый закон. Закон единообразия:

При скрещивании гомозиготных организмов, отличающихся друг от друга по одной (или нескольким) паре альтернативных признаков, все гибриды первого поколения единообразны по генотипу и фенотипу.

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака — на современном языке это означает гомозиготность особей по этому признаку. Мендель же формулировал чистоту признака как отсутствие проявлений противоположных признаков у всех потомков в нескольких поколениях данной особи при самоопылении. При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с жёлтыми и зелёными семенами, у всех потомков семена были жёлтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким. Итак, гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак (более сильный, доминантный), всегда подавлял другой (рецессивный).

Второй закон. Закон расщепления признаков.

При моногибридном скрещивании гетерозиготных организмов (гибридов первого поколения) в потомстве наблюдается расщепление по генотипу – 1 гомозиготный организм по доминантному гену (AA) к 2 гетерозиготным организма (Aa) и к 1 гомозиготному организму по рецессивному гену (aa) или 1:2:1, по фенотипу (при полном доминировании) – 3 организма с доминантным при- знаком к 1 организму с рецессивным признаком или 3:1.

Читайте так же:  Государственная регистрация завещательного отказа

Скрещиванием организмов двух чистых линий, различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание. Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть — рецессивный, называется расщеплением. Следовательно, расщепление — это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

Третий закон. Закон независимого наследования признаков.

При скрещивании двух организмов отличающихся друг от друга по двум или более парам альтернативным признакам гены и соотвествующие им признаки наследнуются независимо друг от друга и комбинируются во всех возможных вариациях.

http://megaobuchalka.ru/11/12526.html

Законы Г.Менделя и их цитологическое обоснование

Закон единообразия гибридов первого поколения, или первый закон Менделя, утверждает, что потомство первого поколения от скрещивания «чистых линий», различающихся по одному признаку, будет проявлять признак одного из родителя.

Закон расщепления, или второй закон Менделя, гласит, что при скрещивании гибридов первого поколения (гетерозиготных особей) между собой в потомстве происходит расщепление признаков по фенотипу 3:1 (75% особей с доминантным и 25% с рецессивным признаком) и генотипу 1:2:1.

Закон независимого комбинирования (наследования) признаков, или третий закон Менделя, утверждает, что при дигибридном скрещивании во втором поколении появляются организмы с новыми сочетаниями признаков, отличных от родительских, т.е. выявляются особи с четырьмя фенотипами в соотношении 9:3:3:1 (два фенотипа имеют «родительские» сочетания признаков, а оставшиеся два — новые).

Цитологические основы дигибридного скрещивания:

  • 3-тий закон Менделя справедлив только для тех случаев, когда анализированные гены находятся в разных парах гомологичных хромосом.
  • При образовании гамет из каждой пары хромосом и находящихся в них аллельных генов в гамету попадает только один ген из пары, причём в результате случайного расхождения хромосом при мейозе ген А может попасть в одну гамету с геном В или с генами b, а; ген а может объединиться с геном В или с геном b.

Статистический характер законов Г. Менделя. Условие их выполнения.

Для того чтобы при скрещивании у животных и высших растений все фенотипические классы проявились в расщеплении, необходимо равновероятное образование разных сортов гамет и осуществление всех возможных их сочетаний при оплодотворении. Следовательно, важным условием реализации расщепления является размер, или объем, выборки, оцениваемой в опыте. Чем меньше количество особей в анализируемом потомстве, тем более вероятно случайное отклонение от нормального расщепления.

Условие выполнения законов Менделя при моногибридном скрещивании : аллельные гены должны взаимодействовать по принципу полного доминирования (при неполном доминировании у гетерозигот наблюдается промежуточное проявление признака, вследствие чего расщепление по фенотипу и генотипу совпадает 3:1).

Условия выполнения законов Менделя при дигибридном скрещивании:

— гены, отвечающие заразные признаки находятся в разных (негомологичных) хромосомах;

— не должно быть взаимодействия неаллельных генов.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома — страшная бессонница, которая потом кажется страшным сном. 9162 — | 7378 — или читать все.

http://studopedia.ru/9_102345_zakoni-gmendelya-i-ih-tsitologicheskoe-obosnovanie.html

Цитологические основы законов наследования

Раздел ЕГЭ: 3.5. Закономерности наследственности, их цитологические основы. Закономерности наследования, установленные Г. Менделем, их цитологические основы (моно-и дигибридное скрещивание)…

Мендель, проводя опыты по скрещиванию различных сортов гороха, установил ряд законов наследования, положивших начало генетике. Он разработал гибридно-логический метод анализа наследования признаков организмами. Этот метод предусматривает скрещивание особей с альтернативными признаками; анализ исследованных признаков у гибридов без учета остальных; количественный учет гибридов.

Проводя моногибридное скрещивание (скрещивание по одной паре альтернативных признаков), Мендель установил закон единообразия первого поколения.

Основные положения гибридологического метода

  • Для скрещивания берутся организмы, предки которых в ряду поколений не давали расщепления по избранным признакам, то есть чистые линии.
  • Организмы отличаются по одной или двум парам альтернативных признаков.
  • Проводится индивидуальный анализ потомства каждого скрещивания.
  • Используется статистическая обработка результатов.

Первый закон Г. Менделя

При скрещивании двух гомозиготных особей, отличающихся друг от друга одной парой альтернативных признаков, всё потомство в первом поколении единообразно как по фенотипу, так и по генотипу.

Второй закон Г. Менделя

При скрещивании гибридов первого поколения (двух гетерозиготных особей) во втором происходит расщепление 3 : 1. Наряду с доминантным появляется и рецессивный признак.

Анализирующее скрещивание — скрещивание, при котором особь с неизвестным генотипом, который нужно установить (АА или Аа), скрещивается с рецессивной гомозиготой (аа). Если всё потомство от итого скрещивания будет однообразным, исследуемый организм имеет генотип АА. Если в потомстве Судет наблюдаться расщепление по фенотипу 1 : 1, исследуемый организм — гетерозиготный Аа.

Третий закон Г. Менделя

При скрещивании гомозиготных особей, отличающихся двумя парами альтернативных признаков или более, каждый признак наследуется независимо от других, комбинируясь во всех возможных сочетаниях.

В опытах Мендель использовал разные способы скрещивания : моногибридное, дигибридное и полигибридное. При последнем скрещивании особи отличаются более чем по двум парам признаков. Во всех случаях соблюдается закон единообразия первого поколения, закон расщепления признаков во втором поколении и закон независимого наследования.

Закон независимого наследования: каждая пара признаков наследуется независимо друг от друга. В потомстве идет расщепление по фенотипу 3 :1 по каждой паре признаков. Закон независимого наследования справедлив лишь в том случае, если гены рассматриваемых пар признаков лежат в различных парах гомологичных хромосом. Гомологичные хромосомы сходны по форме, размерам и группам сцепления генов.

Поведение любых пар негомологичных хромосом в мейозе не зависит друг от друга. Расхождение: их к полюсам клетки носит случайный характер. Независимое наследование имеет, большое значение для эволюции; так как является источником комбинативной наследственности.

ТАБЛИЦА: все закономерности наследования

Это конспект по биологии для 10-11 классов по теме «Закономерности наследственности. Законы Моргана». Выберите дальнейшее действие:

http://uchitel.pro/%D0%BE%D1%81%D0%BD%D0%BE%D0%B2%D1%8B-%D0%B3%D0%B5%D0%BD%D0%B5%D1%82%D0%B8%D0%BA%D0%B8/

3.5 Закономерности наследственности, их цитологические основы

Видеоурок 1: Решение задач на Первый закон Менделя

Видеоурок 2: Второй закон Менделя. Пример типичной задачи

Читайте так же:  Хочу оспорить завещание

Видеоурок 3: Третий закон Менделя

Видеоурок 4: Генетическая задача на дигибридное скрещивание

Лекция: Закономерности наследственности, их цитологические основы

Г. Мендель стал основоположником науки, впоследствии названной генетикой. Этот немецкий ученый занимался изучением принципов проявления у поколений гороха наследуемых фенотипических признаков. Ему удалось сформулировать базовые закономерности наследования у нескольких поколений вариантов проявления моногенных (определяемых одним и тем же геном ) качеств. Впоследствии были установлены границы действия этих законов, например, случаи, когда наследуемый признак определяется двумя или большим количеством генов.

Закон единообразия гибридов первого поколения

На практике получалось, что скрещивание двух линий гороха, гомозиготных по цвету цветков — то есть, обладающих либо генами пурпурности, либо их белизны – давало потомков, обладающих исключительно красными, с желтыми и зелеными плодами – потомков только с желтыми, ровными и морщинистыми плодами – потомков с ровными.

Чаще проявляющийся в фенотипе у потомства признак стал называться доминантным, подавляемый и проявляющийся у меньшей части потомства – рецессивным.

Скрещивание представителей чистых линий с целью изучения единственной фенотипической черты, за которую ответственны аллели одного гена, называется моногибридным.

Закон расщепления признаков

Гетерозиготность полученных ранее гибридов первого поколения, то есть наличие в их генотипе обоих вариантов аллеля — и доминантного, и рецессивного, обуславливает, при дальнейшем их размножении, проявление всех унаследованных возможных комбинаций 2 генов, которых математически может быть 4 и получению потомства, имеющего:

* исключительно доминантные гены АА;

* исключительно рецессивные гены аа;

* две возможных комбинации доминантных и рецессивных генов Аа и аА.

В результате – доминантный ген, полученный тремя четвертями потомков, определит фенотипическое проявление доминантного признака – то есть, три четверти из полученных растений гороха второго поколения будут иметь только пурпурные цветки. И у одной четверти потомков, которым не достался доминантный ген, проявится в фенотипе рецессивный, и они будут обладать белыми цветками.

Подавленный фенотипически, но присутствующий скрыто у потомства первой генерации, рецессивный ген фенотипически проявится у четверти потомков второго поколения.

Г. Мендель правильно предполагал, и впоследствии это подтвердилось в результате цитогенетических исследований, что наследуемые признаки в последующих генерациях не смешиваются, а либо подавляются, либо проявляются. Подтверждением этого является:

Закон чистоты гамет

Объясняется это тем, что при мейотическом делении получаются гаплоидные гаметы, каждая из которых обладает половинным набором хромосом, ведь в его ходе гомологичные хромосомы попадают в разные половые клетки. Получается, что гетерозиготная (имеющая в генотипе оба признака) особь дает своим потомкам либо один ген, либо другой, а они, в комбинации с генами второго родителя, приводят к фенотипическому расхождению признаков.

Закон независимого наследования


Проявления этого закона очень схожи с результатами выполнения закона о единообразии – все, полученное при исследовании потомство первой генерации, обладало фенотипически исключительно доминантными чертами, однако эти черты различались – цвет плодов и цветков, форма плодов. В следующем, втором поколении, у новой генерации потомков обнаружилось расхождение внешних черт в долевом распределении как 9:3:3:1. На практике это выразилось в том, что:

9:16 растений обладало плодами желтого цвета и цветками красного;

3:16 – плодами желтого цвета, цветками белого;

3:16 – плодами зеленого цвета, цветками красного;

1:16 – плодами зеленого цвета и цветками белого.

Данный закон выполняется, если исследуемые признаки не являются сцепленными — когда гены, определяющие их, располагаются в разных хромосомах или в одной, но на максимально большом расстоянии. Одновременное изучение порядка наследования двух признаков путем получения и исследования следующих генераций называется дигибридным скрещиванием.

Статистика и результаты исследований зависят от пространственного расположения генов в хромосомах.

Закономерности сцепленного наследования

Принципиальные закономерности сцепленного наследования генов обнаружил в начале ХХ в ученый Т. Морган. Ему удалось доказать, что вероятность наследования генов будет разной из-за возможности расцепления генов кроссинговером в ходе мейотического деления. Он также открыл существование определенной математической и практической вероятности кроссинговера между разными парами генов, для чего реализовал идею создания генных карт, иллюстрирующих частоту произошедших фактов разнесения и схождения признаков.

Он обнаружил, что гомологичные хромосомы довольно часто обмениваются генами. На основе статистического материала исследования Морган вывел правило:

Чем меньше расстояние между генами – тем больше вероятность, что их унаследует один потомок. Чем оно больше — тем для них более вероятно оказаться в разных хромосомах после кроссинговера и разойтись потом в разные гаметы.

Генетически, оба пола животных могут быть:

гомогаметными – обладать парой половых одинаковых хромосом, например, самки млекопитающих обладают хромосомами ХХ, а у птиц половыми хромосомами ZZ обладают самцы;

гетерогаметными – имеющими разные половые хромосомы – у млекопитающих гетерогаметны самцы, они имеют хромосомы ХУ, а у птиц – самки, имеющие хромосомы ZW.

При этом, рецессивный ген, наследующийся сцепленно с полом, будет проявляться у всех организмов, относящихся к гетерогаметному полу и гомозиготных представителей гомогаметного пола. Именно поэтому, генетическими заболеваниями, вызываемыми рецессивными генными аллелями, чаще болеют мужчины, в то время как женщины являются носительницами этих генов.

Изучение генома человека сопряжено с различными факторами, одни из которых упрощают исследования, другие – осложняют. Так, социально-этические факторы не позволяют проводить целенаправленные скрещивания, люди обитают в различных условиях, что затрудняет сравнение влияния изменчивости. С другой стороны – склонность человека к сбору и накоплению информации помогает исследователям в сборе статистики, дает возможность исследования генеалогических линий. В исследованиях также применяются такие методы, как: биохимические исследования, пренатальная диагностика, гистологические, моделирование, статистический и многие другие.

Видео (кликните для воспроизведения).

http://cknow.ru/knowbase/660-35-zakonomernosti-nasledstvennosti-ih-citologicheskie-osnovy.html

Литература


  1. Жилина, Е. А. Юридическая служба предприятия: cоздание и управление / Е.А. Жилина. — М.: КноРус, 2010. — 168 c.

  2. Ключевые прецеденты ФАС Московского округа по налогам за 2009 год. — М.: Тимотиз Паблишинг Раша, 2010. — 512 c.

  3. Братановский, С. Н. Теория государства и права / С.Н. Братановский. — М.: Приор-издат, 2003. — 174 c.
  4. Сидорова, Е.В. Используем сервисы Google. Электронный кабинет преподавателя: моногр. / Е.В. Сидорова. — М.: БХВ-Петербург, 2015. — 966 c.
Цитологические основы законов наследования
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here