Закон сцепленного наследования генов с кроссинговером

Сегодня мы подготовили статью: "Закон сцепленного наследования генов с кроссинговером" на основе авторитетных источников. Если в процессе прочтения возникнут вопросы, обращайтесь к дежурному консультанту.

Законы Т. Моргана: сцепленное наследование признаков, нарушение сцепления генов

Сцепленным наследованием называют скоррелированное наследование генов в определенных состояниях, которые находятся внутри одной хромосомы. Мейотический кроссинговер не приводит к возникновению полной корреляции, по причине того, что «разъехаться» по разным гаметам могут сцепленные гены.

Проведенные Морганом.Т наблюдения, доказали разную вероятность кроссинговера у различных генных пар. В результате возникла идея создания генных карт, базирующихся на частотах кроссинговера у разных генов. Первую генную карту создал ученик Моргана – Стертевант А. (1913 г.), исследуя хромосомы плодовой мушки дрозофилы.

Процент кроссинговера определяет расстояние между генами, которые находятся внутри одной хромосомы. Единицей расстояния принято значение в 1 % кроссинговера (1 сантиморганида либо 1 морганида). Чем удаленнее располагаются гены внутри хромосомы, тем чаще происходит кроссинговер. Максимальным расстоянием между генами, находящимися в одной хромосоме, является значение в 49 сантиморганид.

[2]

Формулировка закона Моргана: Сцепленным генам, локализованным внутри одной хромосомы, свойственно совместное наследование.

Хромосомная теория наследования

Хромосомной теорией наследования именуют теорию, доказывающую материальную основу наследственности в виде хромосом. Здесь находятся гены, обособленные клеточным ядром. Благодаря свойствам хромосом осуществляется преемственность свойств организмов по ряду поколений. Основоположником хромосомной теории является Т.Г. Морган, который вместе со своими учениками установил:

  • локализацию генов в хромосомах;
  • зависимость частоты кроссинговера между гомологичными хромосомами от расстояния между генами, локализованными в одной хромосоме;
  • наличие определенной последовательности в расположении генов по хромосомам;
  • сцепленное расположение близконаходящихся генов и образование ими сцепленных групп, равных числу гаплоидного хромосомного набора;
  • кроссинговер (обмен гомологичными участками) и его процентную частоту.

Важнейшим следствием указанной теории являются современные представления о генах, как о функциональных наследственных единицах. Сформировать хромосомной теории помогли и сведения, которые получены в результате наблюдения за генетикой пола.

Закон Моргана – сцепленное наследование

Закон независимого распределения признаков (третий закон Менделя) нарушается в случае, если гены, определяющие разные признаки, находятся в одной хромосоме. Такие гены обычно наследуются совместно, т. е. наблюдается сцепленное наследование. Явление сцепленного наследования было изучено Томасом Морганом и его сотрудниками и поэтому носит название закона Моргана.

Закон Т. Моргана можно сформулировать следующим образом: гены, находящиеся в одной хромосоме, образуют группу сцепления и часто наследуются совместно, при этом частота совместного наследования зависит от расстояния между генами (чем ближе, тем чаще).

Причиной, по которой сцепленное наследование нарушается, является кроссинговер, протекающий в мейозе при конъюгации хромосом. При этом гомологичные хромосомы обмениваются своими участками, и таким образом ранее сцепленные гены могут оказаться в разных гомологичных хромосомах, что обуславливает независимое распределение признаков.

Например, ген A сцеплен с геном B (AB), в гомологичной хромосоме находятся рецессивные аллели соответствующих генов (ab). Если в процессе кроссинговера гомологичные хромосомы почти никогда не обмениваются участками так, что один ген переходит в другую хромосому, а другой остается в прежней, то такой организм образует гаметы только двух типов: AB (50%) и ab (50%). Если же обмен соответствующими участками происходит, то какой-то процент гамет будет содержать гены Ab и aB. Обычно их процент меньше, чем при независимом распределении генов (когда A и B находятся в разных хромосомах). Если при независимом распределении всех типов гамет (AB, ab, Ab, aB) будет по 25%, то в случае сцепленного наследования гамет Ab и aB будет меньше. Чем их меньше, тем ближе гены расположены друг к другу в хромосоме.

Особо выделяют сцепленное с полом наследование, когда исследуемый ген находится в половой (обычно X) хромосоме. В данном случае изучается наследование одного признака, а вторым выступает пол. Если наследуемый признак сцеплен с полом, то он по-разному наследуется при реципрокных скрещиваниях (когда признаком сначала обладает родитель женского пола, потом мужского).

Если мать обладает генотипом aa, а у отца проявляется доминантный признак (точно есть один ген A), то в случае сцепления с полом все дочери будут иметь доминантный признак (в любом случае получат от отца его единственную X-хромосому, а все сыновья — рецессивный (от отца достается Y-хромосома, в которой нет соответствующего гена, а от матери — в любом случае ген a). Если бы признак не был сцеплен с полом, то среди обоих полов детей могли быть обладатели доминантного признака.

Когда исследуемые гены сцеплены в аутосоме, то такое сцепление называют аутосомным. Сцепление называют полным, если родительские комбинации аллелей не нарушаются из поколение в поколение. Такое бывает очень редко. Обычно наблюдается неполное сцепленое наследование, которое нарушает как третий закон Менделя, так и закон Моргана (в его сокращенной формулировке: гены, находящиеся в одной хромосоме наследуются совместно).

Гены в хромосоме расположены линейно. Расстояние между ними измеряется в сантиморганах (сМ). 1 сМ соответствует наличию 1% кроссоверных гамет. Проводя различные скрещивания и статистически анализируя потомков, ученые выявляют сцепленные гены, а также расстояние между ними. На основе полученных данных строятся генетические карты, в которых отражается локализация генов в хромосомах.

Химия, Биология, подготовка к ГИА и ЕГЭ

Сцепленное наследование

Автор статьи — Саид Лутфуллин.

После открытия законов наследственности Менделя стали замечать, что не всегда эти законы срабатывают.

Например: скрестили дигетерозиготную самку дрозофилы с серым телом и нормальными крыльями с самцом с черным телом и укороченными крыльями .

Серое тело и нормальные крылья – доминантные признаки.

По законам Менделя схема скрещивания такая:

Но практический результат скрещивания отличается.

Как правило, в потомстве наблюдается расщепление 1:1,

фенотипы потомства: серое тело, нормальные крылья и черное тело, укороченные крылья .

Не срабатывает закон независимого наследования. Почему же так? Неужели законы Менделя действительно не работают? Конечно же, нет, законы природы, могут быть «нарушены», только если это позволяет другой закон (исключение из правила).

  • информацию о каждом признаке несет определенный ген;
  • гены находятся в хромосомах.

Естественно, что количество хромосом значительно меньше количества генов, поэтому в одной хромосоме закодировано несколько генов.

Гены, находящиеся в одной хромосоме наследуются вместе, то есть сцеплено.

А гены, находящиеся в разных хромосомах наследуются независимо,

так как при гаметогенезе хромосомы распределяются случайно, следовательно, два несцепленных гена могут попасть вместе в одну гамету гамете, а могут и нет.

Гены, находящиеся в одной хромосоме, обязательно окажутся в одной гамете.

В примере, который мы рассмотрели ранее, мы можем заметить: серое тело наследуется вместе с нормальные крыльями , а черное тело наследуется вместе с укороченными крыльями .

Гены цвета тела и длины крыльев находятся в одной хромосоме.

Самка дигетерозиготна, есть две гомологичные хромосомы:

в одной из гомологичных хромосом закодированы гены серого тела и нормальных крыльев ,

в другой — гены черного тела и укороченных крыльев

Читайте так же:  Закон сцепленного наследования признаков открыл

Но получается всего два вида гамет — признаки цвета тела и размера крыльев «неделимы»

Отцовская особь по этим признакам дигомозиготная:

в одной гомологичной хромосоме гены черного тела и укороченных крыльев ,

и в другой гомологичной хромосоме так же.

Все признаки, закодированные в одной хромосоме, образуют так называемую группу сцепления .

Признаки из одной группы сцепления наследуются вместе.

И как можно догадаться,

количество групп сцепления равно количеству хромосом в гаплоидном наборе.

Примеры задач

Задача 1:

Немного другое оформление: сцепленные признаки записываются на «палочках», например генотип самки из нашей задачи следует записать вот так:

  • палочки означают гомологичные хромосомы, в которых локализованы гены
  • буквы по одну сторону от палочек обозначают сцепленные друг с другом гены.

То есть запись говорит:

признаки АВ сцеплены друг с другом; признаки ab так же сцеплены друг с другом

  • положение генов в генотипе 1) называется цис-положением: AB \ ab (доминантные признаки на одной хромосоме, рецессивные на другой)
  • положение 2) называется транс-положением: Ab \ aB.

Разберем на примере:

1) В условии задачи сразу указаны все признаки, заполним таблицу:

2) Первое растение дигетерозиготно, сказано, что доминантные признаки локализованы в одной хромосоме, то есть сцеплены. Причем доминантные признаки находятся на одной гомологичной хромосоме, следовательно на другой гомологичной хромосоме располагаются рецессивные признаки (цис-положение). Генотип первого растения: AB \ ab.

Получаем всего два вида гамет (так как признаки сцеплены):

3) Так как у второго растения проявил ись рецессивные признаки, делаем вывод, что оно дигомозиготно. И его генотип: ab\ab. Образуется только один сорт гамет: ab.

4) Наконец, составим схему скрещивания:

И ответим на последний вопрос задачи — про закон:

проявляется закон сцепленного наследования, он гласит: гены, локализованные в одной хромосоме образуют группу сцепления и наследуются вместе .

Но случается, что даже гены из одной группы сцепления (локализованные в одной хромосоме) наследуются раздельно, то есть «расцепляются».

Для примера, возьмем скрещивание из предыдущей задачи.

При таком же скрещивании может получиться и 4 фенотипические группы (вместо положенных 2) в потомстве, как и при независимом наследовании. Это объясняется возможностью кроссинговера между гомологичными хромосомами (тем, кто не понимает о чем речь, советую прочитать статью кроссинговер ).

Допустим если у особи признаки AB сцеплены, то при образовании гамет, если произойдет кроссинговер, есть вероятность, что участок хромосомы, в котором закодирован один из генов «перескочит» на другую гомологичную хромосому, и сцепление нарушится. На примере нашей задаче, в случае кроссинговера скрещивание будет следующим:

У дигетерозиготного растения образуется еще два сорта гамет, за счет кроссинговера. Гаметы, при образовании которых, произошел кроссинговер (в данной задаче это Ab и aB ) называются кроссоверными . Статистически процент кроссоверных гамет меньше некроссоверных.

Чем дальше друг от друга находятся гены в хромосоме, тем больше вероятность того, что сцепленные гены, будут «разлучены» при рекомбинации, происходящей во время кроссинговера.

И соответственно, чем ближе друг к другу расположены гены в хромосоме, тем вероятность их разъединения.

Эта зависимость вероятности разделения генов кроссинговером и расстояния между генами оказалась настолько «удобной», что расстояние между генами измеряют в процентах вероятности их разъединения при кроссинговере. По формуле:

  • x – вероятность разъединения генов в процентах,
  • а – количество особей, образовавшихся из кроссоверных гамет, n – количество всех особей.
  • И 1% вероятности разъединения генов приняли за единицу расстояния между этими генами.

Единица эта называется морганида. Назвали единицу в честь известного генетика Томаса Моргана, который изучал это явление

1 морганида = 1% вероятности, что сцепленные гены, в результате кроссинговера, окажутся на разных гомологичных хромосомах

Закон Томаса Моргана

Дальнейшие исследования генетиков показали, что законы Менделя о независимом наследовании признаков при дигибридном скрещивании применимы лишь тогда, когда разные гены располагаются в разных парах гомологичных хромосом. В том случае, если два гена находятся в одной паре гомологичных хромосом, расщепление в потомстве гибридов будет другим.

У любого организма генов значительно больше, чем хромосом. Например, у человека имеется около миллиона генов, а хромосом всего 23 пары. Следовательно, в одной хромосоме размещается в среднем несколько тысяч генов. Гены, расположенные в одной хромосоме, называют сцепленными. Все гены этой хромосомы образуют группу сцепления, которая при мейозе обычно попадает в одну гамету.

Значит, гены, входящие в одну группу сцепления, не подчиняются закону независимого наследования, а при дигибридном скрещивании вместо ожидаемого расщепления по фенотипу в соотношении 9:3:3:1 дают соотношение 3:1, как при моногибридном скрещивании.

Закономерности сцепленного наследования были установлены американским биологом Томасом Морганом (1866-1945). В качестве объекта он использовал плодовую муху дрозофилу. У дрозофилы окраску тела и длину крыльев определяют следующие пары аллелей: А — серое тело, а — черное тело, В — длинные крылья, b — зачаточные крылья. Гены, отвечающие за окраску тела и длину крыльев, находятся в одной паре гомологичных хромосом и наследуются сцепленно.

При скрещивании дрозофилы с серым телом и длинными крыльями с дрозофилой, имеющей черное тело и зачаточные крылья, все гибриды первого поколения имели серую окраску тела и длинные крылья.

При дальнейшем скрещивании между собой гибридных мух первого поколения в F2 не произошло ожидаемого расщепления по фенотипу 9:3:3:1. Вместо этого в F2 были получены мухи с родительскими фенотипами в соотношении примерно 3:1 . Появление в F2 двух фенотипов вместо четырех позволило сделать вывод, что гены окраски тела и длины крыльев дрозофил находятся в одной хромосоме. Так был установлен закон Т.Моргана: гены, расположенные в одной хромосоме, наследуются совместно — сцепленно, то есть наследуются преимущественно вместе.

Однако при дигибридном скрещивании при сцепленном наследовании признаков не всегда появляются особи только двух фенотипов. Иногда появляются особи еще двух фенотипов с перекомбинацией (новым сочетанием) родительских признаков: серое тело — зачаточные крылья, черное тело — длинные крылья. (Особей с такими фенотипами немного — около 8,5% каждого типа.) Почему же нарушается сцепление генов и появляются особи с новыми фенотипами? Было установлено, что сцепление генов может быть полным и неполным.

[1]

Полное сцепление наблюдается в том случае, если скрещиваются серый самец с длинными крыльями и самка с черным телом и зачаточными крыльями. Расщепление по фенотипу в этом случае будет 1:1, то есть наблюдается полное сцепление генов в одной хромосоме.

Читайте так же:  Замена свидетельства о смерти

При скрещивании серой длиннокрылой самки с самцом, имеющим черное тело и зачаточные крылья, расщепление по фенотипу будет примерно 41,5:41,5:8,5:8,5, что характеризует неполное сцепление. Причина нарушения сцепления заключается в том, что в ходе мейоза происходит кроссинговер и гомологичные хромосомы обмениваются своими участками. В результате гены, расположенные в одной из гомологичных хромосом, оказываются в другой хромосоме. Возникают новые сочетания признаков.

У самцов дрозофил в мейозе кроссинговер не происходит, поэтому при скрещивании серого длиннокрылого самца дрозофилы с рецессивной самкой с черным телом и зачаточными крыльями сцепление будет полным. Неполное сцепление наблюдается в том случае, если самка гетерозиготна, а самец гомозиготен. В данном примере кроссинговер происходит примерно у 17% самок.

Таким образом, если не происходит перекреста хромосом и обмена генами, то наблюдается полное сцепление генов. При наличии кроссинговера сцепление генов бывает неполным. Благодаря перекресту хромосом возникают новые сочетания генов и признаков. Чем дальше друг от друга расположены гены в хромосоме, тем больше вероятность перекреста между ними и обмена участками хромосом.

Количество разных типов гамет будет зависеть от частоты кроссинговера или расстояния между анализируемыми генами. Расстояние между генами исчисляется в морганидах: единице расстояния между генами, находящимися в одной хромосоме, соответствует 1% кроссинговера. Такая зависимость между расстояниями и частотой кроссинговера прослеживается только до 50 морганид.

Сравните результаты скрещивание дрозофил:
а) Полное сцепление без кроссинговера
б) С частотой кроссинговера равной 17 %

Результатом исследований Т.Х.Моргана стало создание им хромосомной теории наследственности:

1. Гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов, причем набор генов каждой из негомологичных хромосом уникален;

2. Каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;

3. Гены расположены в хромосомах в определенной линейной последовательности;

4. Гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;

5. Сцепление генов может нарушаться в процессе кроссинговера; это приводит к образованию рекомбинантных хромосом ;

6 . Частота кроссинговера является функцией расстояния между генами: чем больше расстояние, тем больше величина кроссинговера (прямая зависимость);

7. Каждый вид имеет характерный только для него набор хромосом — кариотип.

Закон сцепленного наследования генов с кроссинговером

3120

дн. с момента
Начало нового учебного года

Принципы решения задач на сцепленное наследование

Задачи на сцепленное наследование неаллельных генов по Т.Моргану, при сдаче ЕГЭ по биологии оказываются сложными еще для бОльшего количества учащихся, чем задания по дигибридному скрещиванию неаллельных генов по Г.Менделю.

Снова подчеркну, что задачи на сцепленное наследование неаллельных генов ни в коем случае нельзя путать с задачами на анализирование закономерностей наследования признака, сцепленного с полом, то есть признака организма, аллельные гены которого находятся только в половых

хромосомах XХ или ХY.

Хорошо бы уяснить и то,

в чем закон сцепленного наследования Т.Моргана является противоположностью третьему закону независимого наследования признаков Г.Менделя:

а) по третьему закону Менделя во втором поколении от скрещивания дигетерозигот (AaBb x AaBb) образуется каждым из родителей с равной вероятностью (по 25%) по четыре сорта гамет AB, Ab, aB, ab .

б) по закону сцепленного наследования Моргана от скрещивания дигетерозигот (без кроссинговера) будет образовываться с равной вероятностью (по 50%) всего по два сорта гамет. Только AB и ab или Ab и aB (в зависимости от того какие аллели генов с какими являются сцепленными).

Итак,

в задачах на сцепленное наследование надо определить какое потомство получится, если изучаемые признаки, находятся не в разных (как по Менделю), а в одной и той же паре гомологичных родительских хромосом, то есть относятся к одной группе сцепления.

А в чем проблема то

Поскольку анализируемые признаки в этом типе заданий относятся к одной группе сцепления, они и должны

наследоваться по закону Моргана сцеплено или совместно. Да, действительно, чаще всего так и происходит, но как вы помните, при образовании половых клеток в профазе I мейоза может происходить кроссинговер (обмен равноценными участками гомологичных хромосом).

Да, интересен русский язык :

пишу “может происходить “, подразумевая, что может и не происходить !

Так вот, с какой вероятностью возможен кроссинговер

между данными в задаче парами анализируемых признаков, то есть с какой вероятностью произойдет нарушение закона их сцепленного наследования, что приведет к образованию у дигетерозигот не только двух пар основных гамет (как должно быть без кроссинговера), а дополнительно еще двух пар кроссоверных гамет (всего образуется четыре сорта гамет как-будто по Менделю, но не в равном соотношении) – это и предстоит определить.

Для того, чтобы лучше разобраться в теме сцепленного наследования, разберем подробно решения нескольких задач.

Очень важно помнить всего лишь следующее правило Т.Моргана:

вероятность нарушения сцепленного наследования или возникновения кроссинговера между неаллельными генами одной группы сцепления при мейозе прямо пропорциональна расстоянию между ними в хромосоме.

Я бы, как репетитор ЕГЭ по биологии, настоятельно рекомендовал это правило воспринимать в ранге закона , так как именно оно настолько универсально, что позволяет устанавливать генетические карты

организмов и на нем построено решение почти всех задач по сцепленному наследованию. В последних учебниках биологии это правило даже не выделено курсивом ?!

Таким образом, что получается? Чем дальше изучаемые гены находятся друг от друга в данной паре гомологичных хромосом, тем с большей вероятностью при образовании половых клеток они будут наследоваться порознь, не совместно .

И последнее,

самое главное определение. Поскольку о расстоянии между неаллельными генами в хромосоме можно судить по частоте перекреста между ними, была введена единица измерениярасстояния между генами : 1 сантиморган – сМ (более старый термин морганида). 1 сМ равен 1% перекрес та .

Задача 1. На сцепленное наследование с кроссинговером

У человека гены А и В локализованы в аутосоме и растояние между ними 8 морганид. Какая вероятность рождения ребенка с генотипом и фенотипом матери, если ее генотип Аb//аВ, а генотип супруга аb//аb.

Читайте так же:  Срок действия вступления в наследство

Без кроссинговера генотип матери способен образовать только такие гаметы как : Аb

и аВ.

Поскольку указано расстояние между ними равное 8 морганидам, то это значит, что мы должны решать эту задачу с возможным протеканием кроссинговера. Кроссинговер обеспечит с вероятность 8% появление кроме основных гамет еще и рекомбинантных (кроссоверных) таких как АВ и аb .

Поскольку генотип отца гомозиготен по обоим признакам, то он образует хоть без кроссинговера, хоть с кроссинговером всего один «сорт» гамет аb.

Таким образом, мы получим потомков :

Аb//аb, аВ//аb по 46%, и АВ//аb , аb//аb по 4%, то есть вероятность рождения ребенка гетерозиготного по обоим признакам как мать АаВb равна 4%.

Задача 2. Про бабочек с кроссинговером

У бабочки-парусника ген, обуславливающий окраску тела, и ген, контролирующий наличие выступа на крыле, являются доминантными и расположены на расстоянии 6 морганид. Какое потомство можно ожидать от скрещивания гетерозиготной по обоим признакам самки и неокрашенного самца без выступа на крыле?

Сказано, что доминантные

аллели разных генов окраски тела самки бабочки (обозначим А) и формы края крыла (обозначим В) находятся в одной хромосоме. Так как ещё известно, что она гетерозиготна по обоим признакам, значит в другой, гомологичной этой хромосоме, у неё „сидят“ рецессивные аллели этих двух признаков ав. Про самца сказано, что он был с фенотипически рецессивным по обоими изучаемым признакам.

Итак, нам известны генотипы самки и самца бабочки парусника : АВ//ав

и ав//ав. Самка без кроссинговера производит такие гаметы: АВ и ав (их будет образовываться при мейозе 94% ). Самец — только ав (хоть с кроссинговером, хоть без кроссинговера — он ведь гомозиготный).

Кроссинговер обеспечит образование самкой при мейозе еще 6% вот таких рекомбинантных гамет: Ав

и аВ.

Потомство: АВ

// ав и ав// ав ( 47% цветных с выступом на крыле — как исходная самка и 47% неокрашенных без выступа — как исходный самец).

Видео (кликните для воспроизведения).

Ав

// aв и аВ// ав ( 3% цветных без выступа и 3% неокрашенных с выступом на крыле).

Задача 3. Разводим кроликов (с кроссинговером)

У кроликов рецессивный ген белой пятнистости (голландские кролики) сцеплен с рецессивным геном, обуславливающим длинный волосяной покров ангорского типа. Кроссинговер на этом участке составляет 14 %. Гомозиготного длинношерстного пятнистого кролика скрестили с особью дикого типа. Какие фенотипы, и в каком соотношении должны иметь место в случае возвратного скрещивания гибридов первого поколения с голландским длинношерстным кроликом?

А

— однотонный окрас шерсти (дикий тип), В — нормальная (короткая) длина шерсти (дикий тип);

а

— пятнистый окрас (голландский кролик), b — длинная шерсть (ангора).

В этом первом скрещивании мы видим, что возможный кроссинговер при мейозе (образовании гамет) ни у одной из родительских форм (они обе ди

гомозиготы) не вызовет образования каких-либо новых рекомбинантных гамет : будут гаметы только ab и AB.

F1: .. AB//ab

(все потомки в F1 получились дикого типа с однотонным окрасом и короткой шерстью, но уже дигетерозиготные).

Возвратное

(обратное скрещивание с одним из родителей) скрещивание полученного гибрида с пятнистым длинношерстным даст:

G: AB, ab

…………. ab (такие гаметы образуются без кроссинговера их 86%)

F2: AB//ab, ab//ab,

соответственно, таких однотонных короткошерстных и пятнистых длинношерстных потомков будет рождаться по 43% .

В результате кроссинговера

первый организм образует еще и такие рекомбинантные гаметы как : Ab и aB , поэтому появятся еще с вероятностью 14 % кролики вот с такими генотипами : Ab//ab и aB//ab , то есть однотонные с длинной шерстью и пятнистые с короткой шерстью по 7% .

Закон сцепленного наследования генов с кроссинговером

1) Женщина, которая унаследовала ген мышечной дистрофии и ген гемофилии от отца, вышла замуж за здорового мужчину. Расстояние между рассматриваемыми генами 12 морганид. Определите вероятность рождения детей с двумя заболеваниями?

2) У дрозофилы доминантные гены, контролирующие серу окраску тела и развитие щетинок, локализованы в одной хромосом и находятся на расстоянии около 6 морганид. Рецессивные алле этих генов, обусловливающие черную окраску тела и отсутствие щетинок, находятся в другой гомологичной хромосоме. Какое потомство и в каком процентном соотношении можно ожидать от скрещивания дигетерозиготной серой самки, имеющей развитые щетинки, черным самцом, не имеющим щетинок?

Текстовое поле

А — серая окраска тела

а — черная окраска тела

В — развитые щетинки

в — отсутствие щетинок

6 морганид — расстояние между неаллельны ми генами

Решение: Так как расстояние между неаллельными генами равно 6 морганидам, следовательно, у родителей в 94 % случаях будут образовываться нормальные гаметы, а в 6 % — кроссоверные гаметы. Так, у самки возможно образование 4-х типов гамет (два типа нормальных гамет и два типа кроссоверных гамет), из которых по 47 % придется на каждый тип нормальных гамет (94 % : 2 = 47 %) и по 3 %на каждый тип кроссоверных гамет (6 % : 2 = 3 %). Поскольку самец рецессивен по обоим парам признаков, то у него образуется один тип гамет , т.е. нормальные и кроссоверные гаметы одинаковы.

Тип задачи — наследование признаков при сцеплении генов и кроссинговере.

Ответ: В потомстве наблюдается расщепление в следующем соотношении: 47 % серых мух с щетинками, 47 % черных мух без щитинок, 3 % серых мух без щетинок и 3 % черных мух с щетинками.

3)При скрещивании растений кукурузы с гладкими окрашенными зернами с растением, дающим морщинистые неокрашенные семена, в первом поколении все растения давали гладкие окрашенные зерна. При анализирующем скрещивании гибридов из F1 в потомстве было четыре фенотипические группы: 1200 гладких окрашенных, 1215 морщинистых неокрашенных, 309 гладких неокрашенных, 315 морщинистых окрашенных. Составьте схему решения задачи. Определите генотипы родитетелй и потомства в двух скрещиваниях. Объясните формирование четырех фенотипических групп во втором скрещивании.

Поскольку в первом поколении получилось единообразие (первый закон Менделя), следовательно, скрещитвали гомозигот, в F1 получилась дигетерозигота, несущая доминантные признаки.

А — гладкие зерна, а — морщинистые зерна.
B — окрашенные зерна, b — неокрашенные зерна.

Анализирующее скрещивание – это скрещивание с рецессивной гомозиготой. Поскольку во втором поколении получилось неравная численность фенотипических групп, следовательно, имело место сцепленное наследование. Те фенотпические группы, которые представлены в большом количестве, получены из нормальных гамет со сцепленными генами, а группы, представленные в малом количестве – из рекомбинантных гамет, сцепление в которых было нарушено из-за кроссинговера в мейозе.

Читайте так же:  Получение квартиры по наследству по завещанию

AB

x ab

ab

G AB ab F1 AB

ab

гладкие
окрашен. AB

ab

x ab

ab

G нормальные гаметы
со сцеплением, много AB ab ab рекомбинантные гаметы
с нарушенным
сцеплением, мало Ab aB F2 AB

ab

ab

ab

Ab

ab

aB

ab

гладкие
окрашенные,
много (1200) морщинист.
неокрашен., много (1215) гладкие
неокрашен.,
мало (309) морщинист.
окрашен.,
мало (315)

Формирование четырех фенотипических групп проихошло из-за кроссинговера, которые привел к частичному нарушению сцепления.

У томата высокий рост доминирует над низким, гладкий эндосперм – над шероховатым. От скрещивания двух растений получено расщепление: 208 высоких растений с гладким эндоспермом, 9 – высоких с шероховатым эндоспермом, 6 – низких с гладким эндоспермом, 195 – низких с шероховатым эндоспермом. Определить вид наследования, генотип исходных растений и расстояние между генами.

Рецессивный ген, отвечающий за нейросенсорную глухоту, и доминантный ген ретинобластомы находятся на расстоянии 12 морганид. Оба супруга гетерозиготны по обоим заболеваниям. При этом от отцов оба супруга получили ретинобластому, а от матерей нейросенсорную глухоту. Определить вероятность рождения здоровых детей.

Задача № 2. При скрещивании пятнистых нормальношерстных кроликов со сплошь окрашенными ангорскими крольчихами гибриды были пятнистые нормальношерстные. В потомстве от анализирующего скрещивания получено:

52 – пятнистых ангорских;

288 – сплошь окрашенных ангорских;

46 – сплошь окрашенных нормальношерстных;

314 – пятнистых нормальношерстных.

Найти расстояние между генами окраски и длины (С)

Пояснение к задаче

Очевидно, что шерсть нормальной длины доминирует над ангорской, а пятнистая окраска – над сплошной. Гены окраски и длины шерсти сцеплены, так как при расщеплении в анализирующем скрещивании наблюдается неравномерное соотношение фенотипических классов (в отличие от менделеевского 9 : 3: 3: 1 для F 2 в дигибридном скрещивании).

Кроссоверные классы легко определить по меньшей численности или сравнивая классы с исходными родителями. Ясно, что здесь кроссоверные кролики 52 пятнистых ангорских и 46 сплошь окрашенных нормальношерстных. Для определения относительного расстояния между генами окраски и длины шерсти нужно вычислить процент кроссоверных кроликов от всего потомства:

С = (52 + 46) : (52 + 288 + 46 + 314) х 100 % = 14 %

Закон сцепленного наследования генов с кроссинговером

Анализ результатов нарушения сцепленного наследования генов позволяет определить последовательность расположения генов в хромосоме и составить генетические карты. Результаты многочисленных скрещиваниймух

дрозофил показали, что частота нарушения сцепления между генами А и В составляет 6%, между генами А и С – 18%, между генами С и В – 24%.

Перерисуйте предложенную схему хромосомы на лист ответа, отметьте на ней взаимное расположение генов А, В, С и укажите расстояние между ними. Что называют группой сцепления?

[3]

2) Все гены, находящиеся в одной хромосоме, образуют группу сцепления.

Если гены находятся в одной хромосоме, то они не могут разойтись независимо друг от друга, поэтому наследуются вместе (сцеплено) – это закон сцепления (закон Моргана).

За единицу расстояния между генами принят 1% кроссинговера, эта величина названа морганидой

Хромосомная теория наследственности

Положения

Многие исследователи независимо друг от друга приходили к одинаковым выводам. К первому десятилетию ХХ века было известно о роли хромосом в наследовании, был введён в употребление термин «ген», были выявлены половые хромосомы и способы передачи наследственной информации. Знаковой работой стало исследование под руководством Моргана. Благодаря наблюдениям за поколениями фруктовой дрозофилы и на основе накопленных знаний были сформулированы основные положения хромосомной теории наследственности Моргана:

  • гены, отвечающие за наследование признаков, расположены в хромосомах;
  • гены располагаются линейно, каждый ген имеет своё место в хромосоме – локус;
  • набор генов в каждой хромосоме уникален;
  • расположенные близко друг к другу группы генов наследуются сцеплено;
  • число сцепленных генов равно гаплоидному набору хромосом и постоянно для каждого вида (у человека 23 пары хромосом, следовательно, 23 пары сцепленных генов);
  • сцепление хромосом нарушается в ходе кроссинговера (перекрёста) – процесса обмена участками хромосом в профазе I мейоза;
  • чем дальше друг от друга находятся сцепленные группы генов в хромосоме, тем больше вероятность кроссинговера.

Рис. 2. Сцепленное наследование.

Эксперименты Моргана показали, что гены, находящиеся в одной хромосоме, наследуются сцеплено, попадая в одну гамету, т.е. два признака всегда наследуются вместе. Такое явление было названо законом Моргана.

Рис. 3. Кроссинговер.

История

Автором хромосомной теории считается Томас Морган – американский биолог, лауреат Нобелевской премии. Именно он изучил и описал механизм сцепленного наследования, а также сформулировал основные положения теории хромосомной наследственности. Однако Морган опирался на работы своих предшественников – биологов, генетиков, физиологов.

Рис. 1. Томас Морган.

Краткая история становления теории Моргана описана в таблице.

Учёный

Что сделал

Опубликовал результаты многолетних исследований, сформулировал основные законы наследования

Наблюдал распределение генетического материала между ядрами растительной клетки

Наблюдал слияния гамет у иглокожих. Сделал вывод, что ядро несёт наследственную информацию

Наблюдал деление ядер у растений. Сравнил растительные и животные клетки. Сделал вывод, что деление во всех клетках происходит одинаково. Позже ввёл многие термины генетики (гамета, мейоз, гаплоидный и диплоидный набор хромосом, полиплоидия)

Эдуард ван Бенеден

Наблюдал мейоз. Выявил, что часть наследственной информации достаётся от отца, часть – от матери

Ввёл термин «хромосома». До него использовались термины «хроматиновый сегмент» и «хроматиновый элемент»

Теодор Бовери и Уильям Сеттон

Независимо друг от друга выявили взаимосвязь наследственных факторов по Менделю и хромосом. Эти факторы в дальнейшем были названы генами. Сделали вывод, что гены находятся в хромосомах

Опубликовал выводы многолетней работы. Вместе со своими коллегами и учениками – Кэлвином Бриджесом, Альфредом Стёртевантом, Германом Мёллером – сформулировал теорию хромосомного наследования. С 1909 года проводили эксперименты с фруктовой дрозофилой и выявили механизмы сцепленного наследования и способ их нарушения – кроссинговер

В 1933 году Томасу Моргану была присуждена Нобелевская премия за вклад в физиологию и медицину. Решением для премии стала его работа о роли хромосом в процессах наследования.

Что мы узнали?

Рассказали кратко и понятно о хромосомной теории наследственности. Работа Моргана и его коллег помогла переосмыслить и дополнить законы Менделя. Было выявлено, что некоторые признаки наследуются сцеплено, т.к. гены, отвечающие за разные признаки, находятся близко друг к другу на одном участке хромосом. Расхождение сцепленных генов возможно только при кроссинговере – перекрёсте гомологичных хромосом.

mozok.click

Сцепленное наследование и кроссинговер

В предыдущих параграфах вы уже ознакомились с хромосомами и рассмотрели их строение. Какое строение имеют хромосомы? Где именно они расположены в клетке? Чем различаются между собой диплоидный и гаплоидный наборы хромосом? вспомните, что такое кроссинговер и когда он происходит.

Читайте так же:  Письменный отказ от наследства

Хромосомы и группы сцепления

После открытия законов Менделя в науке постепенно начали накапливаться факты о том, что в некоторых случаях расщепление признаков происходит не так, как предполагалось. Оказалось, что гены, расположенные на одной хромосоме, наследуются вместе (сцепленно). Такие гены назвали сцепленными генами. А все гены, расположенные в одной хромосоме, образуют группу сцепления.

Число групп сцепления у организмов определенного вида равно числу хромосом в одинарном (гаплоидном) наборе, который содержится в половых клетках. Например, у дрозофилы их 4.

Образование гамет в случае сцепленного наследования

Примером сцепленного наследования генов может быть наследование двух признаков у мушки дрозофилы — цвета тела и формы крыльев. Черный цвет (а) и зачаточные крылья (b) определяются рецессивными аллелями, а серое тело (А) и длинные крылья (в) — доминантными. Гены, определяющие эти признаки, расположены рядом в одной хромосоме.

Что будет в случае, если мы скрестим самку дрозофилы, которая является рецессивной гомозиготой по этим признакам (генотип aabb), с самцом, у которого в одной хромосоме находятся два доминантных аллеля, а в другой — два рецессивных (генотип Аавв)? Если бы эти признаки наследовались независимо, то у гетерозиготной мухи должны были бы образоваться четыре типа гамет: Ав, ав, Ав и ab. Но признаки наследуются сцепленно, и поэтому образуется только два типа гамет: Ав и ab (у самцов кроссинговер не происходит). Соответственно, потомки от этого скрещивания будут иметь только два фенотипа: серое тело с длинными крыльями и черное тело с зачаточными крыльями (рис. 31.1).

Хромосомная теория наследственности

Как наследуются признаки, если гены, контролирующие их, расположены в одной хромосоме? Ответ на этот вопрос дает хромосомная теория наследственности. Она была сформулирована в начале XX века в Европе, но обосновал и сформулировал ее в современном виде американский генетик Т. Х. Морган (рис. 31.2) со своими учениками.

В основу хромосомной теории наследственности был положен факт существования групп сцепления, которыми и были хромосомы. Эта теория объяснила отклонения от законов Менделя при расщеплении у потомков тех признаков, которые наследуются сцепленно.

Следует отметить, что Т. X. Морган удачно выбрал объект для своих исследований.

Он работал с мухой дрозофилой, которая впоследствии стала классическим объектом для генетических экспериментов. Дрозофил легко содержать в лабораториях, они отличаются высокой плодовитостью, быстрой сменой поколений (при оптимальных условиях содержания каждые полторы-две недели рождается новое поколение) и небольшим числом хромосом, что упрощает наблюдение.

Исследователи определяли, как наследуются длина крыльев и цвет тела у дрозофилы. Они скрестили дрозофил с генотипами

AaBb и aabb, в результате чего получили мух с двумя вариантами фенотипов, образованных от гамет AB и ab, вместо четырех прогнозируемых. Это было возможно только в том случае, если эти два гена располагались рядом на одной хромосоме.

Основные положения хромосомной теории наследственности

— Материальной основой наследственности являются хромосомы.

— Гены расположены в хромосомах в линейной последовательности.

— Гены, локализованные в одной хромосоме, образуют одну группу сцепления и передаются потомкам вместе.

— Число групп сцепления равно гаплоидному числу хромосом.

— Гаплоидное число хромосом является постоянным для каждого вида.

— Признаки, определяемые сцепленными генами, наследуются тоже сцепленно.

— Между гомологичными хромосомами могут происходить кроссинговер и обмен участками.

— Частота кроссинговера прямо пропорциональна расстоянию между генами.

В экспериментах Моргана и его сотрудников по изучению наследования сцепленных признаков было выявлено, что среди гибридов дрозофил есть определенная часть мух с рекомбинацией этих признаков и имеет место нарушение сцепленного наследования. Это явилось следствием кроссинговера.

Вы уже знаете, что кроссинговер — это обмен участками гомологичных хромосом в процессе мейоза. Именно из-за кроссинговера не существует абсолютно полного сцепления генов, при котором они передавались бы всегда вместе. Чем дальше друг от друга они расположены на хромосоме, тем чаще между ними происходит кроссинговер.

Перекрест хроматид гомологичных хромосом может происходить одновременно в нескольких точках. Кроссинговер, происходящий только в одном месте, называют одиночным, в двух точках одновременно — двойным, в трех — тройным. На самом деле в живых клетках кроссинговер всегда множественный (рис. 31.3). Гаметы, в которых произошел кроссинговер, называют кроссоверными.

Опираясь на положения хромосомной теории наследственности и используя механизмы кроссинговера, ученые создали генетические

карты хромосом. Генетической картой хромосомы называют ее графическое изображение с расположением генов. На карте обозначаются названия генов, расстояние между генами и местоположение центромеры. На картах могут показывать не только обычные аллели соответствующих генов, но и их мутантные формы (рис. 31.4).

Генетические карты хромосом особенно подробно составлены для хромосом дрозофилы и кукурузы, с которыми генетики работают уже много лет. Составлены они и для хромосом человека, а также многих животных и культурных растений. Эти карты имеют большое значение для селекционной работы и диагностики тяжелых наследственных заболеваний человека.

Особенности расположения генов в хромосомах и механизмы их сцепленного наследования описывает хромосомная теория наследственности. Гены, содержащиеся в одной хромосоме, образуют группу сцепления и наследуются вместе. Обычно сцепление не является полным. Нарушение сцепления объясняется процессом кроссинговера.

Проверьте свои знания

Видео (кликните для воспроизведения).

1. Что такое группа сцепления? 2. Каковы основные положения хромосомной теории наследственности? 3. Что такое кроссинговер? 4. Почему дрозофила оказалась удобным объектом для генетических исследований? 5*. Некоторые гены гороха содержатся в одной хромосоме, но их наследование происходит по законам Менделя, то есть независимо. Объясните, почему это возможно.

Источники

Литература


  1. Попова А. В. Международное частное право; Питер — Москва, 2010. — 192 c.

  2. Арсеньев, К. К. Заметки о русской адвокатуре / К.К. Арсеньев. — М.: Автограф, 2015. — 560 c.

  3. Бирюков, Б.М. Приватизация и деприватизация жилья: вопросы правового регулирования; М.: Ось-89, 2011. — 208 c.
  4. ашов, А. И. Правоведение. Учебник для вузов / А.И. Балашов, Г.П. Рудаков. — М.: Питер, 2015. — 544 c.
Закон сцепленного наследования генов с кроссинговером
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here