Законы наследования и взаимодействия генов

Сегодня мы подготовили статью: "Законы наследования и взаимодействия генов" на основе авторитетных источников. Если в процессе прочтения возникнут вопросы, обращайтесь к дежурному консультанту.

Закономерности наследственности

Поурочное планирование (28 ч)

Продолжение. См. № 6, 7, 8, 9/2009

Взаимодействие аллельных генов и его типы

Изучая законы Г.Менделя, мы уже знакомились с основными типами взаимодействия аллельных генов. На основе ранее изученного материала заполните таблицу.

Таблица. Типы взаимодействия генов одной аллельной пары

Тип взаимодействия

Характер взаимодействия в
гетерозиготном состоянии

Формулы расщепления по фенотипу в F2 и при анализирующем скрещивании

Примеры

Полное доминирование

Один аллель (доминантный) полностью подавляет действие другого (рецессивного) аллеля

Высокий рост растения доминирует над карликовостью; вьющиеся волосы – над прямыми; карие глаза – над голубыми и т. п.

Неполное доминирование

Действие каждого аллеля реализуется не полностью, вследствие чего проявляется промежуточный признак

Окраска цветков ночной красавицы; серповидноклеточная анемия; цистонурия и т.п.

Кодоминирование

Участие обоих аллелей в определении признака

IV группа крови (эритроциты этой группы крови имеют агглютиногены типа А и типа В)

Взаимодействие неаллельных генов

Исходя из законов Г.Менделя, можно прийти к заключению, что существует довольно прочная связь между геном и признаком, что генотип слагается из суммы независимо действующих генов, а фенотип – механическая совокупность отдельных признаков. Однако прямые и однозначные связи гена с признаком скорее исключение, чем правило. Развитие признака организма обычно находится под контролем многих генов, и признак является результатом взаимодействия неаллельных генов.

Простейший случай взаимодействия неаллельных генов – когда признак контролируется двумя парами аллелей. Рассмотрим некоторые примеры такого взаимодействия.

Комплементарное взаимодействие генов

Явление взаимодействия генов, при котором для проявления признака необходимо наличие двух неаллельных генов, называют комплементарностью (от лат. complementum – дополнение), а гены, необходимые для проявления признака, комплементарными, или дополнительными.

Рассмотрим различные варианты комплементарного взаимодействия генов.

Аллели второго гена проявляются только при наличии доминантного аллеля гена А. Окраска мышей зависит в простейшем случае от двух генов. Мыши с генотипом аа лишены пигмента и имеют белый цвет. При наличии доминантного аллеля А пигмент вырабатывается, и мышь как-то окрашена. Конкретный цвет определяется вторым геном. Его доминантный аллель С обусловливает серый цвет мыши, а рецессивный аллель с – черный цвет. Таким образом, если рассматривать гомозиготные варианты, генотип серых мышей – ААСС, черных – ААсс, белых – ааСС или аасс. При скрещивании серой мыши ААСС с белой аасс в первом поколении все получается по Менделю: все гибриды имеют серый цвет (это гетерозиготы с генотипом АаСс). В F2, как легко проверить, получим 9/16 серых мышей, 3/16 черных и 4/16 белых.

Для проявления признака в генотипе должны присутствовать доминантные аллели двух разных генов. Примером такого комплементарного взаимодействия генов является наследование формы плода у тыквы. При наличии обоих доминантных аллелей плоды имеют дисковидную форму, при наличии одного (любого!) доминантного аллеля – сферическую, а при отсутствии доминантных аллелей – удлиненную.

Для проявления признака в генотипе должны присутствовать доминантные аллели двух разных генов, но каждый доминантный аллель в сочетании с рецессивными аллелями другой пары имеет самостоятельное фенотипическое проявление. Например, у кур гороховидная форма гребня определяется одним доминантным геном, розовидная – другим неаллельным ему, но тоже доминантным геном. Когда эти гены окажутся в одном генотипе, развивается ореховидная форма гребня. В случае если организм оказывается гомозиготным по обоим рецессивным генам, развивается простой листовидный гребень. При скрещивании дигибридов (все с ореховидным гребнем) во втором поколении происходит расщепление в отношении 9:3:3:1. Но здесь нельзя найти независимого расщепления каждого аллеля в отношении 3:1, так как во всех случаях совпадения в генотипе обоих доминантных генов их прямого действия не обнаруживается.

Таким образом, о комплементарном взаимодействии неаллельных генов говорят в том случае, когда два неаллельных гена дают новый признак, то есть имеет место новообразование.

Эпистатическое взаимодействие генов

Взаимодействие генов, при котором один ген подавляет действие другого, неаллельного первому, называется эпистазом (от греч. эпи – над и стазис – стоять), а гены, подавляющие действие других генов, называются генами-супрессорами, или генами-ингибиторами (от лат. inhiber – удерживать), или эпистатическими генами. Подавляемый ген называется гипостатическим.

Различают эпистаз доминантный и рецессивный.

Доминантный эпистаз связан с доминантным геном-ингибитором. Например, ген I обусловливает белый цвет плодов тыквы, при его наличии действие гена В не проявляется. При генотипе iiВВ или iiВb плоды тыквы имеют желтый цвет. Наконец, если оба гена представлены рецессивными аллелями, плоды тыквы имеют зеленый цвет. По этому же типу может наследоваться окраска шерсти собак, овец и других животных.

Рецессивный эпистаз обнаруживается тогда, когда проявление гена подавляется рецессивными аллелями другого гена. Этот вид эпистаза иллюстрируется наследованием окраски шерсти у домовых мышей. Окраска агути (рыжевато-серая) определяется доминантным геном А, его рецессивный аллель а дает черную окраску. Ген из неаллельной пары В способствует проявлению цветности, а ген b является супрессором и подавляет действие доминантного аллеля А и рецессивного а. Мыши с генотипом Аbb неотличимы по фенотипу от особей с генотипом ааbb – все белые.

Полимерное взаимодействие генов

Полимерия – тип взаимодействия неаллельных генов, при котором несколько пар неаллельных генов действуют на развитие одного признака. Такие гены называются полимерными (от греч. полис – много и мерос – часть). Их обозначают одной буквой, но с разными индексами, которые указывают на число аллельных пар в генотипе, обусловливающих развитие конкретного признака (А1А1А2А2).

[2]

Различают два варианта полимерии: с суммирующим действием генов и без усиления генов друг другом.

Суммирующее действие полимерных генов. В этом случае степень проявления признака зависит от числа доминантных аллелей в генотипе особи. Так, красная окраска зерен пшеницы определяется двумя и более парами генов. Каждый из доминантных генов этих аллелей определяет красную окраску, рецессивные гены определяют белый цвет зерен. Один доминантный аллель дает не очень сильно окрашенные зерна. Если в генотипе присутствуют два доминантных аллеля, интенсивность окраски повышается. Лишь в том случае, когда организм оказывается гомозиготным по всем парам рецессивных генов, зерна не окрашены. Таким образом, при скрещивании дигибридов происходит расщепление в отношении 15 окрашенных к одному белому. Но из 15 окрашенных один будет иметь интенсивный красный цвет, т.к. содержит четыре доминантных аллеля, четыре будут окрашены несколько светлее, т.к. содержат в генотипах три доминантных аллеля и один рецессивный аллель, шесть – еще светлее с двумя доминантными и двумя рецессивными аллелями в генотипах, четыре – еще более светлые, т.к. имеют лишь один доминантный и три рецессивных гена, то есть истинное расщепление будет 1:4:6:4:1.

Читайте так же:  Дата принятия наследства

По данному варианту полимерии наследуются окраска кожи, рост и масса у человека. Подобный же механизм наследования характерен для многих количественных, в том числе и хозяйственно-ценных признаков: содержание сахара в корнеплодах свеклы, содержание витаминов в плодах и овощах, длина колоса злаков, длина початка кукурузы, плодовитость животных, молочность скота, яйценоскость кур и др.

Полимерные гены не усиливают друг друга. В этом случае расщепление в F2 будет 15:1. Так, плоды пастушьей сумки могут быть треугольными (доминантный признак) и овальными (рецессив). Признак контролируется двумя парами полимерных генов. Если в генотипе растения имеется хотя бы один доминантный аллель из первой или второй пары полимерных генов, то форма плода у него будет треугольной (А1А2; А1а2; а1А2). Овальную форму плодов будут иметь лишь те растения, у которых в генотипе нет ни одного доминантного аллеля – а1а1а2а2.

Таким образом, накопление определенных аллелей в генотипе может привести к изменению выраженности признаков.

Множественное действие генов

Часто ген оказывает действие не на один, а на ряд признаков организма. Явление, при котором один ген может влиять на формирование нескольких признаков организма, называется плейотропией (от греч. плеон – более многочисленный и тропос – поворот).

Существование этого явления отнюдь не противоречит классической концепции «один ген – один белок – один признак». Упрощенно влияние одного гена сразу на несколько признаков можно представить следующим образом. В результате считывания информации с гена образуется некий белок, который затем может участвовать в различных процессах, происходящих в организме, оказывая таким образом множественное действие. Например, у гороха бурая окраска кожуры семян и развитие пигмента в других частях растения, окраска цветков зависят от одного гена; у дрозофилы ген, обусловливающий белую окраску глаз, влияет на осветление окраски тела и изменение некоторых внутренних органов; у человека ген, отвечающий за рыжий цвет волос, одновременно определяет более светлую окраску кожи и появление веснушек. Синдром Марфана обусловлен аутосомным доминантным плейотропным геном и проявляется высоким ростом, удлинением костей пальцев рук и ног (паучьи пальцы), гиперподвижностью суставов, подвывихом хрусталика глаза, пороком сердца.

Такое множественное действие характерно для большинства генов. Однако не следует представлять, что плейотропный ген в равной степени влияет на каждый из признаков. Для абсолютного большинства генов с той или иной степенью плейотропии характерно более сильное влияние на один признак и значительно более слабое – на другой.

Генотип как целостная система

Факт расщепления в потомстве гибридов позволяет утверждать, что генотип слагается из отдельных элементов – генов, которые могут наследоваться независимо (дискретность генотипа). В то же время генотип не может рассматриваться как простая механическая сумма отдельных генов. Генотип – это система взаимодействующих генов. Точнее, взаимодействуют не сами гены (участки ДНК), а образуемые на их основе генные продукты (РНК, а затем – белки). Поэтому в отдельных случаях действие разных генов относительно независимо, но, как правило, проявление признака есть результат взаимодействия продуктов разных генов.

Генотип любого организма представляет собой сложную целостную систему взаимодействующих генов. Эта целостность генотипа возникла исторически в процессе эволюции вида. В результате мутаций постоянно появляются новые гены, формируются новые хромосомы и даже новые геномы. Вновь возникшие гены могут сразу же взаимодействовать с уже имеющимися генами или модифицировать характер работы последних, даже будучи рецессивными, то есть, не проявляясь сами по себе.

Следовательно, у каждого вида растений и животных генотип проявляет себя как исторически сложившаяся к данному моменту целостная система.

II. Закрепление знаний

Обобщающая беседа по ходу изучения нового материала.

III. Домашнее задание

Изучить параграф учебника (связь между генами и признаками, типы взаимодействия аллельных и неаллельных генов, плейотропия, генотип как целостная система).

http://bio.1sept.ru/view_article.php?ID=200901009

Взаимодействие генов

Вы уже знаете о том, что гены могут взаимодействовать друг с другом по типу полного и неполного доминирования. Однако, в генетике встречается масса других примеров взаимодействия генов. В этой статье мы затронем те, которые ранее не обсуждались.

Кодоминирование

Кодоминирование — взаимодействия аллельных генов, при котором в гетерозиготном состоянии могут оказаться два доминантных гена одновременно, при этом каждый ген отвечает за свой признак.

Наиболее распространенным примером кодоминирования является наследование групп крови у человека.

Решим пару задач, которые укрепят понимание темы.

Пример решения задачи №1

«Родители имеют II и III группы крови, гетерозиготны. Какие группы крови можно ожидать у их детей?»

Гетерозиготный генотип матери — I A i 0 и генотип отца — I B i 0 . Составим схему решения для такого случая.

Итак, в результате такого брака может получиться ребенок с любой группой крови, в чем мы убедились.

Пример решения задачи №2

«Дигетерозиготная по B (III) группе и положительному резус-фактору вступила в брак с таким же мужчиной. Какое расщепление по фенотипу можно ожидать у детей?»

Сходу понятно, что гетерозиготы по III (B) группе крови будут записаны I B i 0 . Резус-фактор для нас новое понятие — это белок, находящийся на поверхности эритроцита (тогда говорят, что резус-фактор положителен), или отсутствующий (тогда у человека резус-фактор считается отрицательным). Генотипы записываются так:

  • Резус-фактор положителен: Rh + Rh + , Rh + rh —
  • Резус-фактор отрицателен: rh — rh —

В данной задаче сказано, что «дигетерозиготна по . и положительному резус-фактору» — значит, резус фактор будет записывать в генотипе — Rh + rh — .

Обратите внимание, что ошибкой является записать рецессивный ген перед доминантным. За такое могут снять балл на экзамене: aA, bB, i 0 I A , rh — Rh + . Правильный вариант записи: Aa, Bb, I A i 0 , Rh + rh — .

Каждая особь образует 4 гаметы, поэтому потомков получается 16. Подсчитает расщепление по фенотипу:

  • 9 потомков : положительный резус-фактор, III (B) группа крови
  • 3 потомка : положительный резус-фактор, I (0) группа крови
  • 3 потомка : отрицательный резус-фактор, III (B) группа крови
  • 1 потомок : отрицательный резус-фактор, I (0) группа крови
Читайте так же:  Где можно составить завещание на квартиру

Расщепление по фенотипу в данном случае получилось: 9:3:3:1. Здесь проявляется III закон Менделя — закон независимого наследования, так как гены, отвечающие за группу крови и резус-фактор, находятся в разных хромосомах.

Комплементарность

Тип взаимодействия неаллельных генов, при котором развитие признака определяется не одной, а двумя или более парами неаллельных генов, располагающихся в разных хромосомах.

Неаллельные гены — это гены, расположенные в разных локусах хромосом, которые отвечают за разные признаки. В генетике случается такое, что один неаллельный ген может влиять на другой (ген a подавляет действие гена B). В этом разделе статьи мы подробно разберемся с подобным взаимодействием и рассмотрим задачи, которые могут встретиться.

Таким образом, развитие признака определяется именно сочетанием генов друг с другом. Здесь логичнее подчеркнуть совместное действие генов, нежели чем сказать, что доминантный ген подавляет рецессивный — при комплементарности это не совсем так.

В каждой задаче свой случай комплементарного взаимодействия генов. Чтобы успешно их решать, надо помнить, что такое явление, как комплементарность, в принципе, возможно, и быть внимательным при написании генотипов особей и их гамет.

Пример решения задачи №3

Наследование слуха у человека определяется двумя доминантными генами из разных аллельных пар, один из которых детерминирует развитие слухового нерва, а другой – улитки. Определить вероятность рождения глухих детей, если оба родителя глухие, но по разным генетическим причинам (у одного отсутствует слуховой нерв, у другого улитка). По генотипу оба родителя являются дигомозиготными.

Здесь проявляется I закон Менделя — закон единообразия гибридов первого поколения. Возможен только один вариант генотипа ребенка от такого брака. У ребенка будет развит и слуховой нерв, и улитка — ребенок не будет глухим, в отличие от родителей.

Эпистаз

Эпистаз (противоположное действие генов) — явление, при котором один ген аллельной пары (супрессор) в доминантном (доминантный эпистаз) или рецессивном (рецессивный эпистаз) состоянии может подавлять развитие признака, за развитие которого отвечает другая пара генов.

Широко известным примером рецессивного эпистаза является Бомбейский феномен, названный так в результате зафиксированного случая в индийском городе Бомбеи. Доктор Бхенде обнаружил, что у людей рецессивных по гену h (hh) на поверхности эритроцитов не синтезируются агглютиногены — в результате этого они могут быть универсальными донорами.

Говоря проще о Бомбейском феномене: у людей с генотипом hh всегда обнаруживается первая группа крови при любом генотипе — I A I A , I B I B , I A I B . Ген h подавляет гены I A и I B — на поверхности эритроцитов не образуются агглютиногены A и B.

Пример решения задачи №4

«Редкий рецессивный ген (h) в гомозиготном состоянии обладает эпистатическим действием по отношению к генам I A , I B и изменяет их действие до I группы крови (бомбейский феномен). Определите возможные группы крови у детей, если у мужа II гомозиготная, у жены IV и оба родителя гетерозиготны по эпистатическому гену»

Вероятность рождения детей с i(0) группой крови в данном случае равна 2/8, или 1/4 (25%). Генотипами, у которых будет i(0) группа крови являются: I A I A hh и I A I B hh. Эпистатический рецессивный ген hh в гомозиготном состоянии всегда приводит к i(0) группе крови.

Полимерия

Полимерией называют зависимость определенного признака организма от нескольких пар аллельных генов, обладающих схожим действием. Такие гены называются полимерными. Часто выраженность признака зависит от соотношения доминантных и рецессивных аллелей — то есть чем больше доминантных генов, тем более выражен признак.

У человека полимерное действие генов заложено в наследовании количественных признаков (вес, рост, цвет кожи, давление).

Пример решения задачи №5

«Цвет кожи у мулатов наследуется по типу полимерии. При этом данный признак контролируется 2 аутосомными несцепленными генами. Сын белой женщины и негра женился на белой женщине. Может ли этот ребенок быть темнее своего отца?»

В данном случае полимерия проявляется в том, что чем больше доминантных генов в генотипе (A и B), тем более темный цвет кожи имеет человек. Это правило мы и применим для решения.

В результате первого брака (вспоминаем закон единообразия Менделя) получается AaBb — средний мулат. По условиям задачи он берет в жены белую женщину aabb. Очевидно, что в этой семье ребенок не может быть темнее своего отца: дети могут быть или же средними мулатами (AaBb), как отец, либо белыми, как мать (aabb).

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

http://studarium.ru/article/128

Законы наследования и взаимодействия генов

Взаимодействие генов
Генотип — это система взаимодействующих аллелей. Эти взаимо-отношения могут быть представлены в виде взаимодействия аллельных и неаллельных генов. Один ген может бьггь представлен двумя (чаще) или большим числом аллелей (множественные аллели), но в диплоидном организме содержится только два аллеля одного гена.

Взаимодействие аллельных генов
Взаимодействие аллельных генов — это взаимодействие между аллелями одного и того же гена. Взаимодействие осуществляется по типу: полного доминирования, неполного доминирования, сверхдо-минирования, кодоминирования.
Полное доминирование — доминантный аллель полностью подавляет рецессивный; проявление доминантного аллеля не зависит от присутствия в генотипе другого аллеля; гетерозиготы и гомозиготы фенотипически не отличаются (желтый цвет горошин доминирует над зеленым, карие глаза — над голубыми).
Неполное доминирование — доминантный аллель неполностью подавляет рецессивный, а у гетерозигот формируется промежуточный фенотип (розовые цветки ночной красавицы).
Кодоминирование — два доминантных аллеля одного гена про-являются в фенотипе независимо друг от друга (организм с генотипом IA IB определяет синтез двух видов антигенов А и В).
Сверхдоминирование — у гетерозигот признак выражен сильнее, чем у гомозигот; доминантный аллель в гетерозиготном состоянии имеет более сильное проявление, чем в гомозиготном (гетерозисная сила).

http://biomed.szgmu.ru/SZGMU_SITE/M_Genetics/Patterns_of_inheritance.html

Законы Менделя

В предыдущей статье мы познакомились с фундаментальными понятиями и методами генетики. Настало время их применить при изучении нового раздела — Менделевской генетики, основанной на законах, открытых Грегором Менделем.

Видео (кликните для воспроизведения).

Мендель следовал некоторым принципам в своих исследованиях, которые привели его работы к успеху:

    Использовал гибридологический метод генетики, подвергая скрещиванию растения гороха с четко различающимися признаками: желтый — зеленый цвет семян, гладкая — морщинистая форма семян
Читайте так же:  Порядок выдачи свидетельства о праве на наследство

Введем несколько новых терминов, которые нам пригодятся. Скрещивание может быть:

  • Моногибридным — в случае если скрещиваемые особи отличаются только по одному исследуемому признаку (цвет семян)
  • Дигибридным — если скрещиваемые особи отличаются по двум различным признакам (цвет и форма семян)

В схеме решения генетическое задачи есть некоторые обозначения: ♀ — женский организм, ♂ — мужской организм, P — родительские организмы, F1 — гибриды первого поколения, F2 — гибриды второго поколения. Вероятно, имеет смысл сохранить картинку ниже себе на гаджет, если вы только приступаете к изучению генетики 😉

Спешу сообщить вам, что браки между людьми (в отличие от насильственного скрещивания гороха) происходят только по любви и взаимному согласию! Поэтому в задачах, где речь идет о людях, не следует ставить знак скрещивания «×» между родительскими особями. В таком случае ставьте знак «→» — «стрелу Амура», чтобы привести в восхищение экзаменатора 🙂

Первый закон Менделя — закон единообразия

С него часто начинаются генетические задачи (в качестве первого скрещивания). Этот закон гласит о том, что при скрещивании гомозиготных особей, отличающихся одной или несколькими парами альтернативных признаков, все гибриды первого поколения будут единообразны по данным признакам.

Этот закон основан на варианте взаимодействия между генами — полном доминировании. При таком варианте один ген — доминантный, полностью подавляет другой ген — рецессивный. В эксперименте, который мы только что изучили, Мендель скрещивал чистые линии гороха с желтыми (АА) и зелеными (aa) семенами, в результате все потомство имело желтый цвет семян (Aa) — было единообразно.

Анализирующее скрещивание

Часто генотип особи не изучен и представляет загадку. Как быть генетику в данном случае? Иногда проще всего применить анализирующее скрещивание — скрещивание гибридной особи (у которой не известен генотип) с гомозиготой по рецессивному признаку.

Анализируя полученное потомство, можно сделать вывод о генотипе гибридной особи.

В рассмотренном случае, если генотип изучаемой особи содержит два доминантных гена (AA) — то в потомстве не может проявиться рецессивного признака, так как все потомство будет единообразно (Aa). Если изучаемая особь содержит рецессивный ген (Aа), то половина потомства будет его иметь (aa). В результате становится известен генотип гибридной особи.

Неполное доминирование

Помимо полного доминирования, существует неполное доминирование, которое характерно для некоторых генов. Известным примером неполного доминирования является наследование окраски лепестков у растения ночная красавица. В этом случае гены не полностью подавляют друг друга — проявляется промежуточный признак.

[3]

Обратите внимание, потомство F1 получилось также единообразным (возможен только один вариант — Aa), но фенотипически у гетерозиготы признак будет проявляться как промежуточное состояние (AA — красный, aa — белый, Aa — розовый). Это можно сравнить с палитрой художника: представьте, как смешиваются красный и белый цвета — получается розовый.

Второй закон Менделя — закон расщепления

«При скрещивании гетерозиготных гибридов (Aa) первого поколения F1 во втором поколении F2 наблюдается расщепление по данному признаку: по генотипу 1 : 2 : 1, по фенотипу 3 : 1″

Скрещивая между собой гибриды первого поколения (Aa) Мендель обнаружил, что в потомстве особей с доминантным признаком (AA, Aa — желтый цвет семян) примерно в 3 раза больше, чем особей с рецессивным (aa).

Искренне желаю того, чтобы вы научились сами определять расщепление по генотипу и фенотипу. Это сделать не сложно: когда речь идет о генотипе, обращайте внимание только на гены (буквы), то есть если перед вами особи AA, Aa, Aa, aa — следует брать генотипы по очереди и складывать количество одинаковых генотипов. Именно в результате таких действий соотношение по генотипу получается 1:2:1.

Если перед вами стоит задача посчитать соотношение по фенотипу, то вообще не смотрите на гены — это только запутает! Следует учитывать лишь проявление признака. В потомстве получилось 3 растения с желтым цветом семян и 1 с зеленым, следовательно, расщепление по фенотипу 3:1.

[1]

Третий закон Менделя — закон независимого наследования

В нем речь идет о дигибридном скрещивании, то есть мы исследуем не один, а два признака у особей (к примеру, цвет семян и форма семян). Каждый ген имеет два аллеля, поэтому пусть вас не удивляют генотипы AaBb 🙂 Важно заметить, что речь в данном законе идет о генах, которые расположены в разных хромосомах.

Запомните III закон Менделя так: «При скрещивании особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга, комбинируясь друг с другом во всех возможных сочетаниях.

Комбинации генов отражаются в образовании гамет. В соответствии с правилом, изложенным выше, дигетерозигота AaBb образует 4 типа гамет: AB, ab, Ab, aB. Повторюсь — это только если гены находятся в разных хромосомах. Если они находятся в одной, как при сцепленном наследовании, то все протекает по-другому, но это уже предмет изучения следующей статьи.

Каждая особь AaBb образует 4 типа гамет, возможных гибридов второго поколения получается 16. При таком обилии гамет и большом количестве потомков, разумнее использовать решетку Пеннета, в которой вдоль одной стороны квадрата расположены мужские гаметы, а вдоль другой — женские. Это помогает более наглядно представить генотипы, получающиеся в результате скрещивания.

В результате скрещивания дигетерозигот среди 16 потомков получается 4 возможных фенотипа:

  • Желтые гладкие — 9
  • Желтые морщинистые — 3
  • Зеленые гладкие — 3
  • Зеленые морщинистые — 1

Очевидно, что расщепление по фенотипу среди гибридов второго поколения составляет: 9:3:3:1.

Пример решения генетической задачи №1

Доминантный ген отвечает за развитие у человека нормальных глазных яблок. Рецессивный ген приводит к почти полному отсутствию глазных яблок (анофтальмия). Гетерозиготы имеют глазное яблоко малых размеров (микрофтальмия). Какое строение глазных яблок будет характерно для потомства, если оба родителя страдают микрофтальмией?

Обратите внимание на то, что доминирование генов неполное: человек с генотипом Aa будет иметь промежуточное значение признака — микрофтальмию. Поскольку доминирование неполное, то расщепление по генотипу и фенотипу совпадает, что типично для неполного доминирования.

В данной задаче только ¼ потомства (25%) будет иметь нормальные глазные яблоки. ½ часть потомства (50%) будет иметь глазное яблоко малых размеров — микрофтальмию, и оставшаяся ¼ (25%) будут слепыми с почти полным отсутствием глазных яблок (анофтальмией).

Читайте так же:  Время день открытия наследства

Не забывайте, что генетика, по сути, теория вероятности. Очевидно, что в жизни в такой семье может быть рождено 4 подряд здоровых ребенка с нормальными глазными яблоками, или же наоборот — 4 слепых ребенка. Может быть как угодно, но мы с вами должны научиться говорить о «наибольшей вероятности», в соответствии с которой с вероятностью 50% в этой семье будет рожден ребенок с микрофтальмией.

Пример решения генетической задачи №2

Полидактилия и отсутствие малых коренных зубов передаются как аутосомно-доминантные признаки. Гены, отвечающие за развитие этих признаков, расположены в разных парах гомологичных хромосом. Какова вероятность рождения детей без аномалий в семье, где оба родителя страдают обеими болезнями и гетерозиготны по этим парам генов.

Я хочу сразу навести вас на мысль о III законе Менделя (закон независимого наследования), который скрыт в фразе » Гены . расположены в разных парах гомологичных хромосом». Вы увидите в дальнейшем, насколько ценна эта информация. Также заметьте, что речь в этой задаче идет о аутосомных генах (расположенных вне половых хромосом). Аутосомно-доминантный тип наследования означает, что болезнь проявляется, если ген в доминантном состоянии: AA, Aa — болен.

В данном случае мы построим решетку Пеннета, которая сделает генотипы потомства более наглядными. Вы видите, что на потомстве буквально нет ни одного живого места: почти все 16 возможных потомков больны либо одним, либо другим заболеванием, кроме одного, aabb. Вероятность рождения такого ребенка очень небольшая 1/16 = 6.25%.

Пример решения генетической задачи №3

У голубоглазой близорукой женщины от брака с кареглазым мужчиной с нормальным зрением родилась кареглазая близорукая девочка и голубоглазый мальчик с нормальным зрением. Ген близорукости (A) доминантен по отношению к гену нормального зрения (a), а ген кареглазости (D) доминирует над геном голубоглазости (d). Какова вероятность рождения в этой семье нормального кареглазого ребенка?

Первый этап решения задачи очень важен. Мы учли описания генотипов родителей и, тем не менее, белые пятна остались. Мы не знаем гетерозиготна (Aa) или гомозиготная (aa) женщина по гену близорукости. Такая же ситуация и с мужчиной, мы не можем точно сказать, гомозиготен (DD) он или гетерозиготен (Dd) по гену кареглазости.

Разрешение наших сомнений лежит в генотипе потомка, про которого нам рассказали: «голубоглазый мальчик с нормальным зрением» с генотипом aadd. Одну хромосому ребенок всегда получает от матери, а другу от отца. Выходит, что такого генотипа не могло бы сформироваться, если бы не было гена a — от матери, и гена d — от отца. Следовательно, отец и мать гетерозиготны.

Теперь мы можем точно сказать, что вероятность рождения в этой семье нормального кареглазого ребенка составляет ¼ или 25%, его генотип — Ddaa.

Аутосомно-доминантный тип наследования

Я не забыл о том, что по ходу изучения генетики вас надо научить видеть различные варианты наследования на генеалогическом древе (родословной) =) Из предыдущей статьи мы узнали о том, как выглядит и чем характеризуется аутосомно-рецессивный тип наследования, сейчас поговорим об аутосомно-доминантном, с которым мы столкнулись в задачах выше.

Аутосомно-доминантный тип наследования можно узнать по следующим признакам:

  • Болезнь проявляется в каждом поколении семьи (передача по вертикали)
  • Здоровые дети больных родителей имеют здоровых детей
  • Мальчики и девочки болеют одинаково часто
  • Соотношение больных и здоровых 1:1

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

http://studarium.ru/article/126

Законы наследования и взаимодействия генов

ЛЕКЦИЯ № 13. Законы наследования

1. Законы Г. Менделя

Наследование – это процесс передачи генетической информации в ряду поколений.

Наследуемые признаки могут быть качественными (моногенными) и количественными (полигенными). Качественные признаки представлены в популяции, как правило, небольшим числом взаимоисключающих вариантов. Например, желтый или зеленый цвет семян гороха, серый или черный цвет тела у мух дрозофил, светлый или темный цвет глаз у человека, нормальная свертываемость крови или гемофилия. Качественные признаки наследуются по законам Менделя (менделирующие признаки).

Количественные признаки представлены в популяции множеством альтернативных вариантов. К количественным относятся такие признаки, как рост, пигментация кожи, умственные способности у человека, яйценоскость у кур, содержание сахара в корнеплодах сахарной свеклы и т. д. Наследование полигенных признаков в целом не подчиняется законам Менделя.

В зависимости от локализации гена в хромосоме и взаимодействия аллельных генов различают несколько вариантов моногенного наследования признаков.

1. Аутосомный тип наследования. Различают доминантный, рецессивный и кодоминантный аутосомный тип наследования.

2. Сцепленный с половыми хромосомами (с полом) тип наследования. Различают Х-сцепленное (доминантное либо рецессивное) наследование и Y-сцепленное наследование.

Мендель изучал наследование цвета семян гороха, скрещивая растения с желтыми и зелеными семенами, и сформулировал на основе своих наблюдений закономерности, названные впоследствии в его честь.

Первый закон Менделя

Закон единообразия гибридов первого поколения, или закон доминирования. Согласно этому закону, при моногибридном скрещивании гомозиготных по альтернативным признакам особей потомство первого гибридного поколения единообразно по генотипу и фенотипу.

Второй закон Менделя

Закон расщепления. Он гласит: после скрещивания потомков F1 двух гомозиготных родителей в поколении F2 наблюдалось расщепление потомства по фенотипу в отношении 3: 1 в случае полного доминирования и 1: 2: 1 при неполном доминировании.


Применяемые Менделем приемы легли в основу нового метода изучения наследования – гибридологического.

Гибридологический анализ – это постановка системы скрещиваний, позволяющих выявить закономерности наследования признаков.

Условия проведения гибридологического анализа:

1) родительские особи должны быть одного вида и размножаться половым способом (иначе скрещивание просто невозможно);

2) родительские особи должны быть гомозиготными по изучаемым признакам;

3) родительские особи должны различаться по изучаемым признакам;

4) родительские особи скрещивают между собой один раз для получения гибридов первого поколения F1, которые затем скрещивают между собой для получения гибридов второго поколения F2;

5) необходимо проведение строгого учета числа особей первого и второго поколения, имеющих изучаемый признак.

Читайте так же:  Первоочередность наследования имущества без завещания

2. Ди– и полигибридное скрещивание. Независимое наследование

Дигибридное скрещивание – это скрещивание родительских особей, различающихся по двум парам альтернативных признаков и, соответственно, по двум парам аллельных генов.

Полигибридное скрещивание – это скрещивание особей, различающихся по нескольким парам альтернативных признаков и, соответственно, по нескольким парам аллельных генов.

Георг Мендель скрещивал растения гороха, отличающиеся по окраске семян (желтые и зеленые) и по характеру поверхности семян (гладкие и морщинистые). Скрещивая чистые линии гороха с желтыми гладкими семенами с чистыми линиями, имеющими зеленые морщинистые семена, он получил гибриды первого поколения с желтыми гладкими семенами (доминантные признаки). Затем Мендель скрестил гибриды первого поколения между собой и получил четыре фенотипических класса в соотношении 9: 3: 3: 1, т. е. в результате во втором поколении появилось два новых сочетания признаков: желтые морщинистые и зеленые гладкие. Для каждой пары признаков отмечалось отношение 3: 1, характерное для моногибридного скрещивания: во втором поколении получилось 3/4 гладких и 1/4 морщинистых семян и 3/4 желтых и 1/4 зеленых семян. Следовательно, две пары признаков объединяются у гибридов первого поколения, а затем разделяются и становятся независимыми друг от друга.

На основе этих наблюдений был сформулирован третий закон Менделя.

Третий закон Менделя

Закон о независимом наследовании: расщепление по каждой паре признаков идет независимо от других пар признаков. В чистом виде этот закон справедлив только для генов, локализованных в разных хромосомах, и частично соблюдается для генов, расположенных в одной хромосоме, но на значительном расстоянии друг от друга.

Опыты Менделя легли в основу новой науки – генетики. Генетика – это наука, изучающая наследственность и изменчивость.

Успеху исследований Менделя способствовали следующие условия:

1. Удачный выбор объекта исследования – гороха. Когда Менделю предложили повторить свои наблюдения на ястре-бинке, этом вездесущем сорняке, он не смог этого сделать.

2. Проведение анализа наследования отдельных пар признаков в потомстве скрещиваемых растений, отличающихся по одной, двум или трем парам альтернативных признаков. Велся учет отдельно по каждой паре этих признаков после каждого скрещивания.

3. Мендель не только зафиксировал полученные результаты, но и провел их математический анализ.

Мендель сформулировал также закон чистоты гамет, согласно которому гамета чиста от второго аллельного гена (альтернативного признака), т. е. ген дискретен и не смешивается с другими генами.

При моногибридном скрещивании в случае полного доминирования у гетерозиготных гибридов первого поколения проявляется только доминантный аллель, однако рецессивный аллель не теряется и не смешивается с доминантным. Среди гибридов второго поколения и рецессивный, и доминантный аллель может проявиться в своем – чистом – виде, т. е. в гомозиготном состоянии. В итоге гаметы, образуемые такой гетерозиготой, являются чистыми, т. е. гамета А не содержит ничего от аллели а, гамета а – чиста от А.

На клеточном уровне основой дискретности аллелей является их локализация в разных хромосомах каждой гомологичной пары, а дискретности генов – их расположение в разных локусах хромосом.

3. Взаимодействия аллельных генов

При взаимодействии аллельных генов возможны разные варианты проявления признака. Если аллели находятся в гомозиготном состоянии, то развивается соответствующий аллелю вариант признака. В случае гетерозиготности развитие признака будет зависеть от конкретного вида взаимодействия аллельных генов.

Это такой вид взаимодействия аллельных генов, при котором проявление одного из аллелей (А) не зависит от наличия в генотипе особи другого аллеля (А1) и гетерозиготы АА1 фенотипиче-ски не отличаются от гомозигот по данному аллелю (АА).

В гетерозиготном генотипе АА1 аллель А является доминантным. Присутствие аллеля А1 никак фенотипически не проявляется, поэтому он выступает как рецессивный.

Отмечается в случаях, когда фенотип гетерозигот СС1 отличается от фенотипа гомозигот СС и С1С1 промежуточной степенью проявления признака, т. е. аллель, отвечающий за формирование нормального признака, находясь в двойной дозе у гомозиготы СС, проявляется сильнее, чем в одинарной дозе у гетерозиготы СС1. Возможные при этом генотипы различаются экспрессивностью, т. е. степенью выраженности признака.

Это такой тип взаимодействия аллельных генов, при котором каждый из аллелей проявляет свое действие. В результате формируется промежуточный вариант признака, новый по сравнению с вариантами, формируемыми каждым аллелем по отдельности.

Это редкий вид взаимодействия аллельных генов, при котором у организма, гетерозиготного по двум мутантным аллелям гена М (М1М11), возможно формирование нормального признака М. Например, ген М отвечает за синтез белка, имеющего четвертичную структуру и состоящего из нескольких одинаковых полипептидных цепей. Мутантный аллель М1 вызывает синтез измененного пептида М1, а мутантный аллель М11 определяет синтез другой, но тоже ненормальной полипептидной цепи. Взаимодействие таких измененных пептидов и компенсация измененных участков при формировании четвертичной структуры в редких случаях может привести к появлению белка с нормальными свойствами.

4. Наследование групп крови системы АВО

Наследование групп крови системы АВО у человека имеет некоторые особенности. Формирование I, II и III групп крови происходит по такому типу взаимодействия аллельных генов, как доминирование. Генотипы, содержащие аллель IA в гомозиготном состоянии, либо в сочетании с аллелем IO, определяют формирование у человека второй (А) группы крови. Тот же принцип лежит в основе формирования третьей (В) группы крови, т. е. аллели IA и IB выступают как доминантные по отношению к аллелю IO, в гомозиготном состоянии формирующему IOIO первую (О) группу крови. Формирование четвертой (АВ) группы крови идет по пути кодоминирования. Аллели IA и IB, по отдельности формирующие соответственно вторую и третью группу крови, в гетерозиготном состоянии определяют IAIB (четвертую) группу крови.

Видео (кликните для воспроизведения).

http://www.telenir.net/biologija/obshaja_biologija_konspekt_lekcii/p13.php

Литература


  1. Под редакцией Аванесова Г. А. Криминология; Юнити-Дана — Москва, 2010. — 576 c.

  2. Малеев, Ю.Н. Международное воздушное право: вопросы теории и практики; М.: Международные отношения, 2012. — 240 c.

  3. Берус, Виталий А.С. Лаппо-Данилевский. История. Философия. Методология / Виталий Берус. — М.: LAP Lambert Academic Publishing, 2014. — 160 c.
  4. Научные воззрения профессоров Пионтковских (отца и сына) и современная уголовно-правовая политика. — М.: Статут, 2014. — 432 c.
Законы наследования и взаимодействия генов
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here